use_gpu: True device: 0 early_stop: patience: 10 federate: mode: standalone total_round_num: 100 sample_client_num: 10 data: root: data/ type: celeba splits: [0.6,0.2,0.2] subsample: 0.1 transform: [['ToTensor'], ['Normalize', {'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225]}]] dataloader: batch_size: 5 model: type: convnet2 hidden: 2048 out_channels: 2 dropout: 0.0 train: local_update_steps: 10 optimizer: lr: 0.001 weight_decay: 0.0 criterion: type: CrossEntropyLoss trainer: type: cvtrainer eval: freq: 10 metrics: ['acc', 'correct']