## Federated Learning for Tree-based Models This list is constantly being updated. Feel free to contribute! ### 2022 | Title | Venue | Link | key words | |-------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------|------------------| | Vertical Federated Learning | arxiv | [pdf](https://arxiv.org/pdf/2211.12814.pdf) | survey | | Tree-Based Models for Federated Learning Systems | Springer | [pdf](https://link.springer.com/chapter/10.1007/978-3-030-96896-0_2) | survey | | Practical Privacy Attacks on Vertical Federated Learning | arxiv | [pdf](https://arxiv.org/pdf/2011.09290.pdf) | vertical, attack | | OpBoost: A Vertical Federated Tree Boosting Framework Based on Order-Preserving Desensitization | VLDB | [pdf](https://arxiv.org/pdf/2210.01318.pdf), [code](https://github.com/alibaba-edu/mpc4j/tree/main/mpc4j-sml-opboost) | vertical | | Federated Boosted Decision Trees with Differential Privacy | arxiv | [pdf](https://arxiv.org/pdf/2210.02910.pdf) | horizontal | | An Efficient and Robust System for Vertically Federated Random Forest | arxiv | [pdf](https://arxiv.org/pdf/2201.10761.pdf) | vertical | | FedGBF: An efficient vertical federated learning framework via gradient boosting and bagging | arxiv | [pdf](https://arxiv.org/pdf/2204.00976.pdf) | vertical | ### 2021 | Title | Venue | Link | key words | | ------------------------------------------------------------ | ------------------------------------------------------ | ------------------------------------------------------------ | --------- | | Fed-EINI: An Efficient and Interpretable Inference Framework for Decision Tree Ensembles in Vertical Federated Learning | IEEE International Conference on Big Data | [pdf](https://arxiv.org/pdf/2105.09540.pdf) | vertical | | Large-Scale Secure XGB for Vertical Federated Learning | CIKM | [pdf](https://arxiv.org/pdf/2005.08479.pdf), [code](https://github.com/secretflow/secretflow) | vertical | | SecureBoost: A Lossless Federated Learning Framework | IEEE Intelligent Systems | [pdf](https://arxiv.org/pdf/1901.08755.pdf), [code](https://github.com/FederatedAI/FATE) | vertical | | An Efficient Learning Framework For Federated XGBoost Using Secret Sharing And Distributed Optimization | ACM Transactions on Intelligent Systems and Technology | [pdf](https://arxiv.org/pdf/2105.05717.pdf) | vertical | | VF2Boost: Very Fast Vertical Federated Gradient Boosting for Cross-Enterprise Learning | SIGMOD | [pdf](https://dl.acm.org/doi/abs/10.1145/3448016.3457241) | vertical | | SoK: Privacy-Preserving Collaborative Tree-based Model Learning | PoPETs | [pdf](https://arxiv.org/pdf/2103.08987.pdf) | Survey | ### 2020 | Title | Venue | Link | key words | |------------------------------------------------------------------------|-------|-----------------------------------------------------|----------------------| | Practical federated gradient boosting decision trees | AAAI | [pdf](https://arxiv.org/pdf/1911.04206.pdf) | horizontal | | FederBoost: Private federated learning for GBDT | arxiv | [pdf](https://arxiv.org/pdf/2011.02796.pdf) | vertical, horizontal | | Privacy Preserving Vertical Federated Learning for Tree-based Models | VLDB | [pdf](http://www.vldb.org/pvldb/vol13/p2090-wu.pdf) | vertical | | Privacy-Preserving Gradient Boosting Decision Trees | AAAI | [pdf](https://arxiv.org/pdf/1911.04209.pdf) | differential privacy | | Adaptive histogram-based gradient boosted trees for federated learning | arxiv | [pdf](https://arxiv.org/pdf/2012.06670.pdf) | horizontal | ### 2019 | Title | Venue | Link | key words | |----------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------|------------| | SecureGBM: Secure Multi-Party Gradient Boosting | IEEE International Conference on Big Data | [pdf](https://arxiv.org/pdf/1911.11997.pdf) | vertical | | Federated Forest | IEEE Transactions on Big Data | [pdf](https://arxiv.org/pdf/1905.10053.pdf) | vertical | | The Tradeoff Between Privacy and Accuracy in Anomaly Detection Using Federated XGBoost | arxiv | [pdf](https://arxiv.org/pdf/1907.07157.pdf) | horizontal | ### 2018 | Title | Venue | Link | key words | |------------------------------------------------------------------|---------------------------------|---------------------------------------------|------------| | Privacy-preserving collaborative prediction using random forests | AMIA Jt Summits Transl Sci Proc | [pdf](https://arxiv.org/pdf/1811.08695.pdf) | horizontal |