use_gpu: True device: 0 early_stop: patience: 20 improve_indicator_mode: mean federate: mode: 'standalone' make_global_eval: False total_round_num: 400 share_local_model: False data: root: data/ type: graph_multi_domain_mix pre_transform: ['Constant', {'value':1.0, 'cat':False}] dataloader: type: pyg model: type: gin hidden: 64 out_channels: 0 task: graph personalization: # local_param: ['encoder_atom', 'encoder', 'clf'] # to handle size-different pre & post layers local_param: [ 'encoder_atom', 'encoder', 'clf', 'norms' ] # pre, post + FedBN train: local_update_steps: 16 optimizer: lr: 0.5 weight_decay: 0.0005 type: SGD criterion: type: CrossEntropyLoss trainer: type: graphminibatch_trainer eval: freq: 5 metrics: ['acc', 'correct']