## Cross-Backend Federated Learning We provide an example for constructing cross-backend (Tensorflow and PyTorch) federated learning, which trains an LR model on the synthetic toy data. The server runs with Tensorflow, and clients run with PyTorch (the suggested version of Tensorflow is 1.12.0): ```shell script # Generate toy data python ../../scripts/distributed_scripts/gen_data.py # Server python ../main.py --cfg distributed_tf_server.yaml # Clients python ../main.py --cfg ../../scripts/distributed_scripts/distributed_configs/distributed_client_1.yaml python ../main.py --cfg ../../scripts/distributed_scripts/distributed_configs/distributed_client_2.yaml python ../main.py --cfg ../../scripts/distributed_scripts/distributed_configs/distributed_client_3.yaml ``` One of the client runs with Tensorflow, and the server and other clients run with PyTorch: ```shell script # Generate toy data python ../../scripts/distributed_scripts/gen_data.py # Server python ../main.py --cfg ../../scripts/distributed_scripts/distributed_configs/distributed_server.yaml # Clients with Pytorch python ../main.py --cfg ../../scripts/distributed_scripts/distributed_configs/distributed_client_1.yaml python ../main.py --cfg ../../scripts/distributed_scripts/distributed_configs/distributed_client_2.yaml # Clients with Tensorflow python ../main.py --cfg distributed_tf_client_3.yaml ```