use_gpu: True device: 0 early_stop: patience: 5 seed: 12345 federate: mode: standalone total_round_num: 300 sample_client_rate: 0.2 data: root: data/ type: femnist splits: [0.6,0.2,0.2] subsample: 0.05 transform: [['ToTensor'], ['Normalize', {'mean': [0.9637], 'std': [0.1592]}]] dataloader: batch_size: 10 model: type: convnet2 hidden: 2048 out_channels: 62 dropout: 0.0 personalization: local_param: [ 'bn', 'norms' ] # FedBN train: local_update_steps: 1 batch_or_epoch: epoch optimizer: lr: 0.01 weight_decay: 0.0 grad: grad_clip: 5.0 criterion: type: CrossEntropyLoss trainer: type: cvtrainer eval: freq: 10 metrics: ['acc', 'correct']