import re import matplotlib.pyplot as plt import numpy as np from matplotlib import cm # 全局字典,包含模型在不同数据集上的效果值和颜色 MAPE_baselines = { 'STG-NCDE': ([15.57, 19.21, 20.53, 15.45], 'darkblue'), 'DCRNN': ([17.99, 21.22, 25.22, 16.82], 'darkgreen'), 'AGCRN': ([15.98, 19.83, 22.37, 15.95], 'darkorange'), 'STGODE': ([16.50, 20.84, 22.59, 16.81], 'purple') } def extract_avg_loss(log_file_path): avg_loss_pattern = re.compile(r"Client #(\d+).*?Round.*?(\d+).*?test_loss': (\d+\.\d+)") client_loss_data = {} with open(log_file_path, 'r') as f: log_content = f.read() matches = avg_loss_pattern.findall(log_content) for match in matches: if int(match[1]) <= 20: client_id = int(match[0]) round_id = int(match[1]) avg_loss = float(match[2]) else: continue if client_id not in client_loss_data: client_loss_data[client_id] = [] client_loss_data[client_id].append((round_id, avg_loss)) return client_loss_data def plot_avg_loss(client_loss_data, dataset): plt.figure(figsize=(6, 4)) all_clients_avg_losses = [] handles = [] labels = [] sorted_clients = sorted(client_loss_data.keys()) colors = plt.get_cmap('tab20').colors # 使用 tab20 调色板 for idx, client_id in enumerate(sorted_clients): losses = client_loss_data[client_id] rounds = [r[0] for r in losses] avg_losses = [r[1] for r in losses] color = colors[idx % len(colors)] # 为每个 client 分配不同颜色 line, = plt.plot(rounds, avg_losses, label=f'Client #{client_id}', color=color) handles.append(line) labels.append(f'Client #{client_id}') all_clients_avg_losses.append(avg_losses) mean_avg_loss_per_round = np.mean(np.array(all_clients_avg_losses), axis=0) mean_line, = plt.plot(rounds, mean_avg_loss_per_round, label='Mean Test Loss', color='red', linewidth=3) handles.append(mean_line) labels.append('Mean Avg Loss') # 添加模型基准线 dataset_index = ['3', '4', '7', '8'].index(dataset) for model_name, (baseline_values, color) in model_baselines.items(): baseline_value = baseline_values[dataset_index] line = plt.axhline(y=baseline_value, color=color, linestyle='--', label=model_name) handles.append(line) labels.append(f'{model_name}') plt.xlabel('Round') plt.ylabel('Test Loss') plt.title(f'Client Test Loss over Rounds in PeMSD{dataset}') plt.grid(True) plt.legend(handles=handles, labels=labels, loc='center left', bbox_to_anchor=(1, 0.5)) plt.savefig(f'D{dataset}_MAPE.png', bbox_inches='tight') plt.show() if __name__ == '__main__': datasets = ['4', '7'] for dataset in datasets: log_file_path = f'./D{dataset}_MAPE/exp_print.log' client_loss_data = extract_avg_loss(log_file_path) plot_avg_loss(client_loss_data, dataset)