use_gpu: True seed: 10 device: 1 early_stop: patience: 60 federate: mode: standalone total_round_num: 70 client_num: 10 data: root: data/trafficflow/PeMS03 type: trafficflow splitter: trafficflowprediction num_nodes: 358 lag: 12 horizon: 12 val_ratio: 0.2 test_ratio: 0.2 tod: False normalizer: std column_wise: False default_graph: True add_time_in_day: True add_day_in_week: True steps_per_day: 288 days_per_week: 7 dataloader: type: trafficflow batch_size: 64 drop_last: True model: type: FedDGCN task: TrafficFlowPrediction dropout: 0.1 horizon: 12 num_nodes: 0 input_dim: 1 output_dim: 1 embed_dim: 10 rnn_units: 64 num_layers: 1 cheb_order: 2 use_day: True use_week: True train: batch_or_epoch: 'epoch' local_update_steps: 1 optimizer: type: 'Adam' lr: 0.003 weight_decay: 0.0 batch_size: 64 epochs: 300 lr_init: 0.003 weight_decay: 0 lr_decay: False lr_decay_rate: 0.3 lr_decay_step: 5,20,40,70 early_stop: False early_stop_patience: 15 grad_norm: True max_grad_norm: 5 real_value: True criterion: type: RMSE trainer: type: trafficflowtrainer log_dir: ./ grad: grad_clip: 5.0 eval: metrics: ['avg_loss']