use_gpu: True device: 2 early_stop: patience: 200 improve_indicator_mode: mean # monitoring: ['dissim'] federate: mode: standalone total_round_num: 400 data: root: data/ type: 'csbm' #type: 'csbm_data_feb_05_2022-19:23' cSBM_phi: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8] dataloader: type: pyg model: type: gpr hidden: 256 out_channels: 2 task: node personalization: local_param: ['prop1'] train: local_update_steps: 2 optimizer: lr: 0.5 weight_decay: 0.0005 type: SGD criterion: type: CrossEntropyLoss trainer: type: nodeminibatch_trainer finetune: local_update_steps: 2 eval: metrics: ['acc', 'correct']