FS-TFP/federatedscope/autotune/baseline/fedhpo_vfl.yaml

53 lines
939 B
YAML

use_gpu: False
device: 0
backend: torch
outdir: vFL_adult
federate:
mode: standalone
client_num: 2
total_round_num: 30
model:
type: xgb_tree
lambda_: 0.1
gamma: 0
num_of_trees: 10
train:
optimizer:
lr: 0.5
# learning rate for xgb model
eta: 0.5
data:
root: data/
type: adult
splits: [1.0, 0.0]
args: [{normalization: False, standardization: True}]
feat_engr:
scenario: vfl
dataloader:
type: raw
batch_size: 50
criterion:
type: CrossEntropyLoss
trainer:
type: verticaltrainer
vertical:
use: True
key_size: 256
dims: [7, 14]
algo: 'xgb'
data_size_for_debug: 1500
feature_subsample_ratio: 1.0
eval:
freq: 5
best_res_update_round_wise_key: test_loss
hpo:
scheduler: sha
num_workers: 0
init_cand_num: 9
ss: 'federatedscope/autotune/baseline/vfl_ss.yaml'
sha:
budgets: [ 3, 9 ]
elim_rate: 3
iter: 1
metric: 'server_global_eval.test_loss'
working_folder: sha