FS-TFP/federatedscope/nlp/hetero_tasks/baseline/config_atc.yaml

51 lines
1.1 KiB
YAML

use_gpu: True
device: 0
seed: 12345
outdir: exp/
federate:
mode: standalone
method: fedavg
total_round_num: 100
client_num: 18
data:
type: hetero_nlp_tasks
root: datasets/
hetero_data_name: ['imdb', 'agnews', 'squad', 'newsqa', 'cnndm', 'msqg']
num_of_client_for_data: [1, 3, 3, 2, 5, 4]
num_workers: 0
cache_dir: cache/
hetero_synth_batch_size: 32
hetero_synth_prim_weight: 0.5
hetero_synth_feat_dim: 128
num_contrast: 20000
model:
type: atc_model
model_type: google/bert_uncased_L-2_H-128_A-2
stage: contrast
use_contrastive_loss: True
contrast_topk: 20
contrast_temp: 1.0
aggregator:
num_agg_topk: [16, 16, 16, 16, 8, 8]
inside_weight: 1.0
outside_weight: 0.0
personalization:
local_param: ['classifier', 'encoder.pooler', 'decoder', 'contrast_head']
trainer:
type: atc_trainer
train:
batch_or_epoch: batch
optimizer:
type: AdamW
lr: 5e-4
weight_decay: 0.01
scheduler:
type: warmup_step
warmup_ratio: 0.1
grad:
grad_clip: 1.0
eval:
split: ['test']
report: ['group_avg']
freq: 100000000 # eval freq across rounds