FS-TFP/federatedscope/nlp/loss/label_smooth_loss.py

32 lines
1.2 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
class LabelSmoothingLoss(nn.Module):
"""
With label smoothing,
KL-divergence between q_{smoothed ground truth prob.}(w)
and p_{prob. computed by model}(w) is minimized.
"""
def __init__(self, label_smoothing, tgt_vocab_size, ignore_index=-100):
assert 0.0 < label_smoothing <= 1.0
self.padding_idx = ignore_index
super(LabelSmoothingLoss, self).__init__()
smoothing_value = label_smoothing / (tgt_vocab_size - 2)
one_hot = torch.full((tgt_vocab_size, ), smoothing_value)
one_hot[self.padding_idx] = 0
self.register_buffer('one_hot', one_hot.unsqueeze(0))
self.confidence = 1.0 - label_smoothing
def forward(self, output, target):
"""
output (FloatTensor): batch_size x n_classes
target (LongTensor): batch_size
"""
model_prob = self.one_hot.repeat(target.size(0), 1)
model_prob.scatter_(1, target.unsqueeze(1), self.confidence)
model_prob.masked_fill_((target == self.padding_idx).unsqueeze(1), 0)
return F.kl_div(output, model_prob, reduction='sum')