FS-TFP/federatedscope/core/auxiliaries/utils.py

160 lines
4.6 KiB
Python

import logging
import math
import os
import base64
import random
import signal
import pickle
import numpy as np
try:
import torch
except ImportError:
torch = None
try:
import tensorflow as tf
except ImportError:
tf = None
logger = logging.getLogger(__name__)
# ****** Worker-related utils ******
class Timeout(object):
def __init__(self, seconds, max_failure=5):
self.seconds = seconds
self.max_failure = max_failure
def __enter__(self):
def signal_handler(signum, frame):
raise TimeoutError()
if self.seconds > 0:
signal.signal(signal.SIGALRM, signal_handler)
signal.alarm(self.seconds)
return self
def __exit__(self, exc_type, exc_value, traceback):
signal.alarm(0)
def reset(self):
signal.alarm(self.seconds)
def block(self):
signal.alarm(0)
def exceed_max_failure(self, num_failure):
return num_failure > self.max_failure
def batch_iter(data, batch_size=64, shuffled=True):
assert 'x' in data and 'y' in data
data_x = data['x']
data_y = data['y']
data_size = len(data_y)
num_batches_per_epoch = math.ceil(data_size / batch_size)
while True:
shuffled_index = np.random.permutation(
np.arange(data_size)) if shuffled else np.arange(data_size)
for batch in range(num_batches_per_epoch):
start_index = batch * batch_size
end_index = min(data_size, (batch + 1) * batch_size)
sample_index = shuffled_index[start_index:end_index]
yield {'x': data_x[sample_index], 'y': data_y[sample_index]}
def merge_dict_of_results(dict1, dict2):
"""
Merge two ``dict`` according to their keys, and concatenate their value.
Args:
dict1: ``dict`` to be merged
dict2: ``dict`` to be merged
Returns:
dict1: Merged ``dict``.
"""
for key, value in dict2.items():
if key not in dict1:
if isinstance(value, dict):
dict1[key] = merge_dict_of_results({}, value)
else:
dict1[key] = [value]
else:
if isinstance(value, dict):
merge_dict_of_results(dict1[key], value)
else:
dict1[key].append(value)
return dict1
def param2tensor(param):
# TODO: make it work in `message`
if isinstance(param, list):
param = torch.FloatTensor(param)
elif isinstance(param, int):
param = torch.tensor(param, dtype=torch.long)
elif isinstance(param, float):
param = torch.tensor(param, dtype=torch.float)
elif isinstance(param, str):
param = pickle.loads((base64.b64decode(param)))
return param
def merge_param_dict(raw_param, filtered_param):
for key in filtered_param.keys():
raw_param[key] = filtered_param[key]
return raw_param
def calculate_time_cost(instance_number,
comm_size,
comp_speed=None,
comm_bandwidth=None,
augmentation_factor=3.0):
# Served as an example, this cost model is adapted from FedScale at
# https://github.com/SymbioticLab/FedScale/blob/master/fedscale/core/
# internal/client.py#L35 (Apache License Version 2.0)
# Users can modify this function according to customized cost model
if comp_speed is not None and comm_bandwidth is not None:
comp_cost = augmentation_factor * instance_number * comp_speed
comm_cost = 2.0 * comm_size / comm_bandwidth
else:
comp_cost = 0
comm_cost = 0
return comp_cost, comm_cost
# ****** Runner-related utils ******
def setup_seed(seed):
np.random.seed(seed)
random.seed(seed)
if torch is not None:
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
if tf is not None:
tf.set_random_seed(seed)
def get_resource_info(filename):
if filename is None or not os.path.exists(filename):
logger.info('The device information file is not provided')
return None
# Users can develop this loading function according to resource_info_file
# As an example, we use the device_info provided by FedScale (FedScale:
# Benchmarking Model and System Performance of Federated Learning
# at Scale), which can be downloaded from
# https://github.com/SymbioticLab/FedScale/blob/master/benchmark/dataset/
# data/device_info/client_device_capacity The expected format is
# { INDEX:{'computation': FLOAT_VALUE_1, 'communication': FLOAT_VALUE_2}}
with open(filename, 'br') as f:
device_info = pickle.load(f)
return device_info