306 lines
9.9 KiB
Python
306 lines
9.9 KiB
Python
from federatedscope.register import register_model
|
|
'''Pre-activation ResNet in PyTorch.
|
|
|
|
Reference:
|
|
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
|
|
Identity Mappings in Deep Residual Networks. arXiv:1603.05027
|
|
'''
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
|
|
class PreActBlock(nn.Module):
|
|
'''Pre-activation version of the BasicBlock.'''
|
|
expansion = 1
|
|
|
|
def __init__(self, in_planes, planes, stride=1):
|
|
super(PreActBlock, self).__init__()
|
|
self.bn1 = nn.BatchNorm2d(in_planes)
|
|
self.conv1 = nn.Conv2d(in_planes,
|
|
planes,
|
|
kernel_size=3,
|
|
stride=stride,
|
|
padding=1,
|
|
bias=False)
|
|
self.bn2 = nn.BatchNorm2d(planes)
|
|
self.conv2 = nn.Conv2d(planes,
|
|
planes,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
bias=False)
|
|
|
|
if stride != 1 or in_planes != self.expansion * planes:
|
|
self.shortcut = nn.Sequential(
|
|
nn.Conv2d(in_planes,
|
|
self.expansion * planes,
|
|
kernel_size=1,
|
|
stride=stride,
|
|
bias=False))
|
|
|
|
def forward(self, x):
|
|
out = F.relu(self.bn1(x))
|
|
shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x
|
|
out = self.conv1(out)
|
|
out = self.conv2(F.relu(self.bn2(out)))
|
|
out += shortcut
|
|
return out
|
|
|
|
|
|
class PreActBottleneck(nn.Module):
|
|
'''Pre-activation version of the original Bottleneck module.'''
|
|
expansion = 4
|
|
|
|
def __init__(self, in_planes, planes, stride=1):
|
|
super(PreActBottleneck, self).__init__()
|
|
self.bn1 = nn.BatchNorm2d(in_planes)
|
|
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
|
|
self.bn2 = nn.BatchNorm2d(planes)
|
|
self.conv2 = nn.Conv2d(planes,
|
|
planes,
|
|
kernel_size=3,
|
|
stride=stride,
|
|
padding=1,
|
|
bias=False)
|
|
self.bn3 = nn.BatchNorm2d(planes)
|
|
self.conv3 = nn.Conv2d(planes,
|
|
self.expansion * planes,
|
|
kernel_size=1,
|
|
bias=False)
|
|
|
|
if stride != 1 or in_planes != self.expansion * planes:
|
|
self.shortcut = nn.Sequential(
|
|
nn.Conv2d(in_planes,
|
|
self.expansion * planes,
|
|
kernel_size=1,
|
|
stride=stride,
|
|
bias=False))
|
|
|
|
def forward(self, x):
|
|
out = F.relu(self.bn1(x))
|
|
shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x
|
|
out = self.conv1(out)
|
|
out = self.conv2(F.relu(self.bn2(out)))
|
|
out = self.conv3(F.relu(self.bn3(out)))
|
|
out += shortcut
|
|
return out
|
|
|
|
|
|
class PreActResNet(nn.Module):
|
|
def __init__(self, block, num_blocks, num_classes=10):
|
|
super(PreActResNet, self).__init__()
|
|
self.in_planes = 64
|
|
|
|
self.conv1 = nn.Conv2d(3,
|
|
64,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
bias=False)
|
|
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
|
|
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
|
|
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
|
|
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
|
|
self.linear = nn.Linear(512 * block.expansion, num_classes)
|
|
|
|
def _make_layer(self, block, planes, num_blocks, stride):
|
|
strides = [stride] + [1] * (num_blocks - 1)
|
|
layers = []
|
|
for stride in strides:
|
|
layers.append(block(self.in_planes, planes, stride))
|
|
self.in_planes = planes * block.expansion
|
|
return nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
out = self.conv1(x)
|
|
out = self.layer1(out)
|
|
out = self.layer2(out)
|
|
out = self.layer3(out)
|
|
out = self.layer4(out)
|
|
out = F.avg_pool2d(out, 4)
|
|
out = out.view(out.size(0), -1)
|
|
out = self.linear(out)
|
|
return out
|
|
|
|
|
|
def PreActResNet18():
|
|
return PreActResNet(PreActBlock, [2, 2, 2, 2])
|
|
|
|
|
|
def PreActResNet34():
|
|
return PreActResNet(PreActBlock, [3, 4, 6, 3])
|
|
|
|
|
|
def PreActResNet50():
|
|
return PreActResNet(PreActBottleneck, [3, 4, 6, 3])
|
|
|
|
|
|
def PreActResNet101():
|
|
return PreActResNet(PreActBottleneck, [3, 4, 23, 3])
|
|
|
|
|
|
def PreActResNet152():
|
|
return PreActResNet(PreActBottleneck, [3, 8, 36, 3])
|
|
|
|
|
|
class BasicBlock(nn.Module):
|
|
expansion = 1
|
|
|
|
def __init__(self, in_planes, planes, stride=1):
|
|
super(BasicBlock, self).__init__()
|
|
self.conv1 = nn.Conv2d(in_planes,
|
|
planes,
|
|
kernel_size=3,
|
|
stride=stride,
|
|
padding=1,
|
|
bias=False)
|
|
self.bn1 = nn.BatchNorm2d(planes)
|
|
self.conv2 = nn.Conv2d(planes,
|
|
planes,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
bias=False)
|
|
self.bn2 = nn.BatchNorm2d(planes)
|
|
|
|
self.shortcut = nn.Sequential()
|
|
if stride != 1 or in_planes != self.expansion * planes:
|
|
self.shortcut = nn.Sequential(
|
|
nn.Conv2d(in_planes,
|
|
self.expansion * planes,
|
|
kernel_size=1,
|
|
stride=stride,
|
|
bias=False), nn.BatchNorm2d(self.expansion * planes))
|
|
|
|
def forward(self, x):
|
|
out = F.relu(self.bn1(self.conv1(x)))
|
|
out = self.bn2(self.conv2(out))
|
|
out += self.shortcut(x)
|
|
out = F.relu(out)
|
|
return out
|
|
|
|
|
|
class Bottleneck(nn.Module):
|
|
expansion = 4
|
|
|
|
def __init__(self, in_planes, planes, stride=1):
|
|
super(Bottleneck, self).__init__()
|
|
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(planes)
|
|
self.conv2 = nn.Conv2d(planes,
|
|
planes,
|
|
kernel_size=3,
|
|
stride=stride,
|
|
padding=1,
|
|
bias=False)
|
|
self.bn2 = nn.BatchNorm2d(planes)
|
|
self.conv3 = nn.Conv2d(planes,
|
|
self.expansion * planes,
|
|
kernel_size=1,
|
|
bias=False)
|
|
self.bn3 = nn.BatchNorm2d(self.expansion * planes)
|
|
|
|
self.shortcut = nn.Sequential()
|
|
if stride != 1 or in_planes != self.expansion * planes:
|
|
self.shortcut = nn.Sequential(
|
|
nn.Conv2d(in_planes,
|
|
self.expansion * planes,
|
|
kernel_size=1,
|
|
stride=stride,
|
|
bias=False), nn.BatchNorm2d(self.expansion * planes))
|
|
|
|
def forward(self, x):
|
|
out = F.relu(self.bn1(self.conv1(x)))
|
|
out = F.relu(self.bn2(self.conv2(out)))
|
|
out = self.bn3(self.conv3(out))
|
|
out += self.shortcut(x)
|
|
out = F.relu(out)
|
|
return out
|
|
|
|
|
|
class ResNet(nn.Module):
|
|
def __init__(self, block, num_blocks, num_classes=10):
|
|
super(ResNet, self).__init__()
|
|
self.in_planes = 64
|
|
|
|
self.conv1 = nn.Conv2d(3,
|
|
64,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
bias=False)
|
|
self.bn1 = nn.BatchNorm2d(64)
|
|
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
|
|
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
|
|
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
|
|
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
|
|
self.linear = nn.Linear(512 * block.expansion, num_classes)
|
|
|
|
def _make_layer(self, block, planes, num_blocks, stride):
|
|
strides = [stride] + [1] * (num_blocks - 1)
|
|
layers = []
|
|
for stride in strides:
|
|
layers.append(block(self.in_planes, planes, stride))
|
|
self.in_planes = planes * block.expansion
|
|
return nn.Sequential(*layers)
|
|
|
|
def forward(self, x):
|
|
out = F.relu(self.bn1(self.conv1(x)))
|
|
out = self.layer1(out)
|
|
out = self.layer2(out)
|
|
out = self.layer3(out)
|
|
out = self.layer4(out)
|
|
out = F.avg_pool2d(out, 4)
|
|
out = out.view(out.size(0), -1)
|
|
out = self.linear(out)
|
|
return out
|
|
|
|
|
|
def ResNet18():
|
|
return ResNet(BasicBlock, [2, 2, 2, 2])
|
|
|
|
|
|
def ResNet34():
|
|
return ResNet(BasicBlock, [3, 4, 6, 3])
|
|
|
|
|
|
def ResNet50():
|
|
return ResNet(Bottleneck, [3, 4, 6, 3])
|
|
|
|
|
|
def ResNet101():
|
|
return ResNet(Bottleneck, [3, 4, 23, 3])
|
|
|
|
|
|
def ResNet152():
|
|
return ResNet(Bottleneck, [3, 8, 36, 3])
|
|
|
|
|
|
def preact_resnet(model_config):
|
|
if '18' in model_config.type:
|
|
net = PreActResNet18()
|
|
elif '50' in model_config.type:
|
|
net = PreActResNet50()
|
|
return net
|
|
|
|
|
|
def resnet(model_config):
|
|
if '18' in model_config.type:
|
|
net = ResNet18()
|
|
elif '50' in model_config.type:
|
|
net = ResNet50()
|
|
return net
|
|
|
|
|
|
def call_resnet(model_config, local_data):
|
|
if 'resnet' in model_config.type and 'pre' in model_config.type:
|
|
model = preact_resnet(model_config)
|
|
return model
|
|
elif 'resnet' in model_config.type and 'pre' not in model_config.type:
|
|
model = resnet(model_config)
|
|
return model
|
|
|
|
|
|
register_model('resnet', call_resnet)
|