FS-TFP/federatedscope/cl/fedgc/client.py

72 lines
3.0 KiB
Python

import torch
import logging
import copy
import numpy as np
from federatedscope.core.message import Message
from federatedscope.core.workers.client import Client
from federatedscope.core.auxiliaries.utils import merge_dict
logger = logging.getLogger(__name__)
class GlobalContrastFLClient(Client):
r"""
GlobalContrastFL(Fedgc) Client receive aggregated model weight from
server then update local weight; it also receive global loss from server
to train model and update weight locally.
"""
def _register_default_handlers(self):
self.register_handlers('assign_client_id',
self.callback_funcs_for_assign_id)
self.register_handlers('ask_for_join_in_info',
self.callback_funcs_for_join_in_info)
self.register_handlers('address', self.callback_funcs_for_address)
self.register_handlers('model_para',
self.callback_funcs_for_pred_embedding)
self.register_handlers('global_loss',
self.callback_funcs_for_local_backward)
self.register_handlers('ss_model_para',
self.callback_funcs_for_model_para)
self.register_handlers('evaluate', self.callback_funcs_for_evaluate)
self.register_handlers('finish', self.callback_funcs_for_finish)
self.register_handlers('converged', self.callback_funcs_for_converged)
def callback_funcs_for_local_backward(self, message: Message):
round, sender, content = message.state, message.sender, message.content
global_loss = content['global_loss']
model_para = self.trainer.train_with_global_loss(global_loss)
self.trainer.update(model_para)
self.state = round
sample_size = self.trainer.num_samples
model_para = self.trainer.get_model_para()
self.comm_manager.send(
Message(msg_type='model_para',
sender=self.ID,
receiver=[sender],
state=self.state,
content=(sample_size, model_para)))
def callback_funcs_for_pred_embedding(self, message: Message):
round, sender, content = message.state, message.sender, message.content
self.trainer.update(content)
sample_size, model_para, results = self.trainer.train()
self.state = round
pred_embedding = self.trainer.get_train_pred_embedding()
train_log_res = self._monitor.format_eval_res(results,
rnd=self.state,
role='Client #{}'.format(
self.ID),
return_raw=True)
logger.info(train_log_res)
self.comm_manager.send(
Message(msg_type='pred_embedding',
sender=self.ID,
receiver=[sender],
state=self.state,
content=(pred_embedding)))