FS-TFP/federatedscope/nlp/metric/rouge/utils.py

135 lines
4.3 KiB
Python

"""
The implementations are adapted from
https://github.com/nlpyang/PreSumm/blob/master/src/others/utils.py
"""
import os
import re
import shutil
import time
from federatedscope.nlp.metric.rouge import pyrouge
REMAP = {
"-lrb-": "(",
"-rrb-": ")",
"-lcb-": "{",
"-rcb-": "}",
"-lsb-": "[",
"-rsb-": "]",
"``": '"',
"''": '"'
}
def clean(x):
return re.sub(r"-lrb-|-rrb-|-lcb-|-rcb-|-lsb-|-rsb-|``|''",
lambda m: REMAP.get(m.group()), x)
def process(params):
temp_dir, data = params
candidates, references, pool_id = data
cnt = len(candidates)
current_time = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime())
tmp_dir = os.path.join(temp_dir,
"rouge-tmp-{}-{}".format(current_time, pool_id))
if not os.path.isdir(tmp_dir):
os.mkdir(tmp_dir)
os.mkdir(tmp_dir + "/candidate")
os.mkdir(tmp_dir + "/reference")
try:
for i in range(cnt):
if len(references[i]) < 1:
continue
with open(tmp_dir + "/candidate/cand.{}.txt".format(i),
"w",
encoding="utf-8") as f:
f.write(candidates[i])
with open(tmp_dir + "/reference/ref.{}.txt".format(i),
"w",
encoding="utf-8") as f:
f.write(references[i])
r = pyrouge.Rouge155(temp_dir=temp_dir)
r.model_dir = tmp_dir + "/reference/"
r.system_dir = tmp_dir + "/candidate/"
r.model_filename_pattern = 'ref.#ID#.txt'
r.system_filename_pattern = r'cand.(\d+).txt'
rouge_results = r.convert_and_evaluate()
results_dict = r.output_to_dict(rouge_results)
finally:
pass
if os.path.isdir(tmp_dir):
shutil.rmtree(tmp_dir)
return results_dict
def test_rouge(temp_dir, cand, ref):
candidates = [line.strip() for line in open(cand, encoding='utf-8')]
references = [line.strip() for line in open(ref, encoding='utf-8')]
assert len(candidates) == len(references)
cnt = len(candidates)
current_time = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime())
tmp_dir = os.path.join(temp_dir, "rouge-tmp-{}".format(current_time))
if not os.path.isdir(tmp_dir):
os.mkdir(tmp_dir)
os.mkdir(tmp_dir + "/candidate")
os.mkdir(tmp_dir + "/reference")
try:
for i in range(cnt):
if len(references[i]) < 1:
continue
with open(tmp_dir + "/candidate/cand.{}.txt".format(i),
"w",
encoding="utf-8") as f:
f.write(candidates[i])
with open(tmp_dir + "/reference/ref.{}.txt".format(i),
"w",
encoding="utf-8") as f:
f.write(references[i])
r = pyrouge.Rouge155(temp_dir=temp_dir)
r.model_dir = tmp_dir + "/reference/"
r.system_dir = tmp_dir + "/candidate/"
r.model_filename_pattern = 'ref.#ID#.txt'
r.system_filename_pattern = r'cand.(\d+).txt'
rouge_results = r.convert_and_evaluate()
results_dict = r.output_to_dict(rouge_results)
finally:
pass
if os.path.isdir(tmp_dir):
shutil.rmtree(tmp_dir)
return results_dict
def tile(x, count, dim=0):
"""
Tiles x on dimension dim count times.
"""
perm = list(range(len(x.size())))
if dim != 0:
perm[0], perm[dim] = perm[dim], perm[0]
x = x.permute(perm).contiguous()
out_size = list(x.size())
out_size[0] *= count
batch = x.size(0)
x = x.view(batch, -1) \
.transpose(0, 1) \
.repeat(count, 1) \
.transpose(0, 1) \
.contiguous() \
.view(*out_size)
if dim != 0:
x = x.permute(perm).contiguous()
return x
def rouge_results_to_str(results_dict):
return ">> ROUGE-F(1/2/l): {:.2f}/{:.2f}/{:.2f}\n>> ROUGE-R(1/2/l): " \
"{:.2f}/{:.2f}/{:.2f}".format(
results_dict["rouge_1_f_score"] * 100,
results_dict["rouge_2_f_score"] * 100,
results_dict["rouge_l_f_score"] * 100,
results_dict["rouge_1_recall"] * 100,
results_dict["rouge_2_recall"] * 100,
results_dict["rouge_l_recall"] * 100,
)