FS-TFP/federatedscope/gfl/baseline/example.yaml

71 lines
1.4 KiB
YAML

# Whether to use GPU
use_gpu: True
# Deciding which GPU to use
device: 0
# Federate learning related options
federate:
# `standalone` or `distributed`
mode: standalone
# Evaluate in Server or Client test set
make_global_eval: True
# Number of dataset being split
client_num: 5
# Number of communication round
total_round_num: 400
# Dataset related options
data:
# Root directory where the data stored
root: data/
# Dataset name
type: cora
# Use Louvain algorithm to split `Cora`
splitter: 'louvain'
dataloader:
# Type of sampler
type: pyg
# Use fullbatch training, batch_size should be `1`
batch_size: 1
# Model related options
model:
# Model type
type: gcn
# Hidden dim
hidden: 64
# Dropout rate
dropout: 0.5
# Number of Class of `Cora`
out_channels: 7
# Criterion related options
criterion:
# Criterion type
type: CrossEntropyLoss
# Trainer related options
trainer:
# Trainer type
type: nodefullbatch_trainer
# Train related options
train:
# Number of local update steps
local_update_steps: 4
# Optimizer related options
optimizer:
# Learning rate
lr: 0.25
# Weight decay
weight_decay: 0.0005
# Optimizer type
type: SGD
# Evaluation related options
eval:
# Frequency of evaluation
freq: 1
# Evaluation metrics, accuracy and number of correct items
metrics: ['acc', 'correct']