FS-TFP/federatedscope/gfl/baseline/fedavg_gnn_minibatch_on_mul...

38 lines
801 B
YAML

use_gpu: True
device: 0
early_stop:
patience: 20
improve_indicator_mode: mean
federate:
mode: 'standalone'
make_global_eval: False
total_round_num: 400
share_local_model: False
data:
root: data/
type: graph_multi_domain_mol
pre_transform: ['Constant', {'value':1.0, 'cat':False}]
dataloader:
type: pyg
model:
type: gin
hidden: 64
out_channels: 0
task: graph
personalization:
local_param: ['encoder_atom', 'encoder', 'clf'] # to handle size-different pre & post layers
# local_param: [ 'encoder_atom', 'encoder', 'clf', 'norms' ] # pre, post + FedBN
train:
local_update_steps: 1
optimizer:
lr: 0.5
weight_decay: 0.0005
type: SGD
criterion:
type: CrossEntropyLoss
trainer:
type: graphminibatch_trainer
eval:
freq: 5
metrics: ['acc', 'correct']