FS-TFP/federatedscope/vertical_fl/loss/binary_cls.py

47 lines
1.3 KiB
Python

import numpy as np
from sklearn import metrics
class BinaryClsLoss(object):
"""
y = {1, 0}
L = -yln(p)-(1-y)ln(1-p)
"""
def __init__(self, model_type):
self.cal_hess = model_type in ['xgb_tree']
self.cal_sigmoid = model_type in ['xgb_tree', 'gbdt_tree']
self.merged_mode = 'mean' if model_type in ['random_forest'] else 'sum'
def _sigmoid(self, y_pred):
return 1.0 / (1.0 + np.exp(-y_pred))
def _process_y_pred(self, y_pred):
if self.merged_mode == 'mean':
y_pred = np.mean(y_pred, axis=0)
else:
y_pred = np.sum(y_pred, axis=0)
if self.cal_sigmoid:
y_pred = self._sigmoid(y_pred)
return y_pred
def get_metric(self, y, y_pred):
y_pred = self._process_y_pred(y_pred)
auc = metrics.roc_auc_score(y, y_pred)
y_pred = (y_pred >= 0.5).astype(np.float32)
acc = np.sum(y_pred == y) / len(y)
return {'acc': acc, 'auc': auc}
def get_loss(self, y, y_pred):
y_pred = self._process_y_pred(y_pred)
res = np.mean(-y * np.log(y_pred + 1e-7))
return res
def get_grad_and_hess(self, y, y_pred):
y_pred = self._process_y_pred(y_pred)
y = np.array(y)
grad = y_pred - y
hess = y_pred * (1.0 - y_pred) if self.cal_hess else None
return grad, hess