FS-TFP/federatedscope/vertical_fl/dataset/credit.py

163 lines
5.6 KiB
Python

import logging
import os
import os.path as osp
import numpy as np
import pandas as pd
from torchvision.datasets.utils import download_and_extract_archive
logger = logging.getLogger(__name__)
class Credit(object):
"""
Give Me Some Credit Data Set
(https://www.kaggle.com/competitions/GiveMeSomeCredit)
Data Set: cs-training.csv, 150000 instances and 12 attributes
The first attribute is the user ID which we do not need, the second
attribute is the label, determining whether a loan should be granted.
Arguments:
root (str): root path
num_of_clients(int): number of clients
feature_partition(list): the number of features
partitioned to each client
tr_frac (float): train set proportion for each task; default=0.8
args (dict): set Ture or False to decide whether
to normalize or standardize the data or not,
e.g., {'normalization': False, 'standardization': False}
algo(str): the running model, 'lr'/'xgb'/'gbdt'/'rf'
debug_size(int): use a subset for debug,
0 for using entire dataset
download (bool): indicator to download dataset
seed: a random seed
"""
base_folder = 'givemesomecredit'
url = 'https://federatedscope.oss-cn-beijing.aliyuncs.com/cs-training.zip'
raw_file = 'cs-training.csv'
def __init__(self,
root,
num_of_clients,
feature_partition,
args,
algo=None,
tr_frac=0.8,
debug_size=0,
download=True,
seed=123):
super(Credit, self).__init__()
self.root = root
self.num_of_clients = num_of_clients
self.feature_partition = feature_partition
self.tr_frac = tr_frac
self.seed = seed
self.args = args
self.algo = algo
self.data_size_for_debug = debug_size
self.data_dict = {}
self.data = {}
if download:
self.download()
if not self._check_existence():
raise RuntimeError("Dataset not found or corrupted." +
"You can use download=True to download it")
self._get_data()
self._partition_data()
def _get_data(self):
fpath = os.path.join(self.root, self.base_folder)
file = osp.join(fpath, self.raw_file)
data = self._read_raw(file)
data = data[:, 1:]
# the following codes are used to choose balanced data
# they may be removed later
# '''
sample_size = 150000
def balance_sample(sample_size, y):
y_ones_idx = (y == 1).nonzero()[0]
y_ones_idx = np.random.choice(y_ones_idx,
size=int(sample_size / 2))
y_zeros_idx = (y == 0).nonzero()[0]
y_zeros_idx = np.random.choice(y_zeros_idx,
size=int(sample_size / 2))
y_index = np.concatenate([y_zeros_idx, y_ones_idx], axis=0)
np.random.shuffle(y_index)
return y_index
sample_idx = balance_sample(sample_size, data[:, 0])
data = data[sample_idx]
# '''
if self.data_size_for_debug != 0:
subset_size = min(len(data), self.data_size_for_debug)
np.random.shuffle(data)
data = data[:subset_size]
train_num = int(self.tr_frac * len(data))
self.data_dict['train'] = data[:train_num]
self.data_dict['test'] = data[train_num:]
def _read_raw(self, file_path):
data = pd.read_csv(file_path)
data = data.fillna(method='ffill')
data = data.values
return data
def _check_existence(self):
fpath = os.path.join(self.root, self.base_folder, self.raw_file)
return osp.exists(fpath)
def download(self):
if self._check_existence():
logger.info("Files already exist")
return
download_and_extract_archive(self.url,
os.path.join(self.root, self.base_folder),
filename=self.url.split('/')[-1])
def _partition_data(self):
x = self.data_dict['train'][:, 1:]
y = self.data_dict['train'][:, 0]
test_data = {
'x': self.data_dict['test'][:, 1:],
'y': self.data_dict['test'][:, 0]
}
test_x = test_data['x']
test_y = test_data['y']
self.data = dict()
for i in range(self.num_of_clients + 1):
self.data[i] = dict()
if i == 0:
self.data[0]['train'] = None
self.data[0]['test'] = test_data
elif i == 1:
self.data[1]['train'] = {'x': x[:, :self.feature_partition[0]]}
self.data[1]['test'] = {
'x': test_x[:, :self.feature_partition[0]]
}
else:
self.data[i]['train'] = {
'x': x[:,
self.feature_partition[i -
2]:self.feature_partition[i -
1]]
}
self.data[i]['test'] = {
'x': test_x[:, self.feature_partition[i - 2]:self.
feature_partition[i - 1]]
}
self.data[i]['val'] = None
self.data[self.num_of_clients]['train']['y'] = y
self.data[self.num_of_clients]['test']['y'] = test_y[:]