228 lines
7.2 KiB
Plaintext
228 lines
7.2 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Step-by-step Guidance for CIKM 2022 AnalytiCup Competition"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Step 1. 安装FederatedScope"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {
|
||
"ExecuteTime": {
|
||
"end_time": "2022-07-26T09:23:22.036523Z",
|
||
"start_time": "2022-07-26T09:23:21.642646Z"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"# 拷贝FederatedScope并切换到比赛所使用的分支cikm22competition\n",
|
||
"\n",
|
||
"!cp -r fs_latest FederatedScope\n",
|
||
"\n",
|
||
"# 如果不在playground中请输入命令`cd FederatedScope`\n",
|
||
"import os\n",
|
||
"os.chdir('FederatedScope')\n",
|
||
"\n",
|
||
"!git checkout cikm22competition"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Step 2. 搭建运行环境"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {
|
||
"ExecuteTime": {
|
||
"end_time": "2022-07-26T09:23:28.796456Z",
|
||
"start_time": "2022-07-26T09:23:22.038843Z"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"# 安装 FS\n",
|
||
"!pip install -e . --user"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Step 3. 下载比赛数据集"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {
|
||
"ExecuteTime": {
|
||
"end_time": "2022-07-26T09:23:29.189922Z",
|
||
"start_time": "2022-07-26T09:23:28.798365Z"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"# 比赛数据集已经提前下载到`data`目录下,通过如下的命令进行解压:\n",
|
||
"!mkdir -p data\n",
|
||
"!cp -r ../data/CIKM22Competition ./data/"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"现在比赛数据集已经被放置在`FederatedScope/data/CIKM22Competition`目录下,遵循`CIKM22Competition/${client_id}`的方式进行组织,其中`${client_id}`是client的序号并从1开始计数。每个client的目录下包含训练(train.pt),测试(test.pt)和验证(val.pt)三个部分的数据。可以通过`torch.load`的方式来查看数据:"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {
|
||
"ExecuteTime": {
|
||
"end_time": "2022-07-26T09:23:29.823058Z",
|
||
"start_time": "2022-07-26T09:23:29.192273Z"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"import torch\n",
|
||
"# 加载序号为1的client的训练数据\n",
|
||
"train_data_client1 = torch.load('./data/CIKM22Competition/1/train.pt')\n",
|
||
"# 查看训练数据中的第一个训练样例\n",
|
||
"print(train_data_client1[0])\n",
|
||
"# 查看训练样例的label\n",
|
||
"print(train_data_client1[0].y)\n",
|
||
"# 查看训练样例的序号,即${sample_id}\n",
|
||
"print(train_data_client1[0].data_index)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Step 4. 在比赛数据上运行baseline算法"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"FederatedScope为比赛数据内置了两个baseline算法:\"isolated training\"和\"FedAvg\"。假设你已经成功的搭建好FederatedScope的运行环境,并下载了比赛数据,那么可以通过以下的命令运行两个baseline算法"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {
|
||
"ExecuteTime": {
|
||
"end_time": "2022-07-26T09:23:29.824268Z",
|
||
"start_time": "2022-07-26T09:23:29.824254Z"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"# 作为示例,我们在这里仅运行3轮,用户可以按照自己的需求更改运行轮数\n",
|
||
"# 按照如下命令运行isolated training\n",
|
||
"!python federatedscope/main.py --cfg federatedscope/gfl/baseline/isolated_gin_minibatch_on_cikmcup.yaml --client_cfg federatedscope/gfl/baseline/isolated_gin_minibatch_on_cikmcup_per_client.yaml federate.total_round_num 3\n",
|
||
"\n",
|
||
"# 按照如下命令运行FedAvg\n",
|
||
"!python federatedscope/main.py --cfg federatedscope/gfl/baseline/fedavg_gin_minibatch_on_cikmcup.yaml --client_cfg federatedscope/gfl/baseline/fedavg_gin_minibatch_on_cikmcup_per_client.yaml federate.total_round_num 3"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"其中参数--cfg xxxx.yaml指定了全局的参数,--client_cfg xxx.yaml为每一个client单独指定了参数"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Step 5. 保存并提交预测结果"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 提交格式\n",
|
||
"如CIKM 2022 AnalytiCup Competition介绍中所述,参赛者需要将所有client的预测结果保存到一个csv文件中进行提交。在这个csv文件中,每一行代表一个测试样例的预测结果,并且由`${client_id}`和`${sample_id}`标识所预测的测试样例。其中,`${client_id}`从1开始计数,`${sample_id}`需要与比赛数据中的测试样例的序号保持一致(可以通过测试样例的`data_index`属性获得测试样例的序号)。\n",
|
||
"\n",
|
||
"需要注意的是,分类任务和多维度回归任务分别遵循以下不同的格式:\n",
|
||
"* 对分类任务,每一行应当遵循如下的格式(`${category_id}`从0开始计数):\n",
|
||
"\n",
|
||
"```\n",
|
||
"${client_id},${sample_id},${category_id}\n",
|
||
"```\n",
|
||
"\n",
|
||
"* 对于N维的回归任务,每一行应当遵循如下的格式:\n",
|
||
"```\n",
|
||
"${client_id},${sample_id},${prediction_1st_dimension},…,${prediction_N-th_dimension}\n",
|
||
"```"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 通过FederatedScope保存预测结果\n",
|
||
"FederatedScope中的\"cikm22competition\"分支目前支持在训练结束时保存预测结果(相关代码见`federatedscope/gfl/trainer/graphtrainer.py`和`federatedscope/core/trainers/torch_trainer.py`)。\n",
|
||
"预测结果将会被保存在一个名为prediction.csv的文件中,该文件位于`outdir`参数所指定的目录中。每次运行时,如果`outdir`所指定的目录已经存在,则会使用一个时间戳后缀用以区分。\n",
|
||
"在训练结束时,FederatedScope的训练记录也将标识出预测结果所在的目录,如下所示\n",
|
||
""
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### 提交预测结果\n",
|
||
"最后,参赛选手可以将预测结果下载到本地,并上传到[天池](https://tianchi.aliyun.com/competition/entrance/532008/introduction)。"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3.8.2 64-bit",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.8.2"
|
||
},
|
||
"vscode": {
|
||
"interpreter": {
|
||
"hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6"
|
||
}
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 4
|
||
}
|
||
|