FS-TFP/exp/RMSE/drawResult.py

86 lines
3.0 KiB
Python

import re
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import cm
# 全局字典,包含模型在不同数据集上的效果值和颜色
RMSE_baselines = {
'STG-NCDE': ([27.09, 31.09, 33.84, 24.81], 'darkblue'),
'DCRNN': ([30.31, 33.44, 38.61, 26.36], 'darkgreen'),
'AGCRN': ([28.25, 32.26, 36.55, 25.22], 'darkorange'),
'STGODE': ([27.84, 32.82, 37.54, 25.97], 'purple')
}
def extract_avg_loss(log_file_path):
avg_loss_pattern = re.compile(r"Client #(\d+).*?Round.*?(\d+).*?test_loss': (\d+\.\d+)")
client_loss_data = {}
with open(log_file_path, 'r') as f:
log_content = f.read()
matches = avg_loss_pattern.findall(log_content)
for match in matches:
if int(match[1]) <= 59:
client_id = int(match[0])
round_id = int(match[1])
avg_loss = float(match[2])
else:
continue
if client_id not in client_loss_data:
client_loss_data[client_id] = []
client_loss_data[client_id].append((round_id, avg_loss))
return client_loss_data
def plot_avg_loss(client_loss_data, dataset):
plt.figure(figsize=(6, 4))
all_clients_avg_losses = []
handles = []
labels = []
sorted_clients = sorted(client_loss_data.keys())
colors = plt.get_cmap('tab20').colors # 使用 tab20 调色板
for idx, client_id in enumerate(sorted_clients):
losses = client_loss_data[client_id]
rounds = [r[0] for r in losses]
avg_losses = [r[1] for r in losses]
color = colors[idx % len(colors)] # 为每个 client 分配不同颜色
line, = plt.plot(rounds, avg_losses, label=f'Client #{client_id}', color=color)
handles.append(line)
labels.append(f'Client #{client_id}')
all_clients_avg_losses.append(avg_losses)
mean_avg_loss_per_round = np.mean(np.array(all_clients_avg_losses), axis=0)
mean_line, = plt.plot(rounds, mean_avg_loss_per_round, label='Mean Test Loss', color='red', linewidth=3)
handles.append(mean_line)
labels.append('Mean Avg Loss')
# 添加模型基准线
dataset_index = ['3', '4', '7', '8'].index(dataset)
for model_name, (baseline_values, color) in model_baselines.items():
baseline_value = baseline_values[dataset_index]
line = plt.axhline(y=baseline_value, color=color, linestyle='--', label=model_name)
handles.append(line)
labels.append(f'{model_name}')
plt.xlabel('Round')
plt.ylabel('Test Loss')
plt.title(f'Client Test Loss over Rounds in PeMSD{dataset}')
plt.grid(True)
plt.legend(handles=handles, labels=labels, loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig(f'D{dataset}_RMSE.png', bbox_inches='tight')
plt.show()
if __name__ == '__main__':
datasets = ['4', '3', '8', '7']
for dataset in datasets:
log_file_path = f'./D{dataset}/exp_print.log'
client_loss_data = extract_avg_loss(log_file_path)
plot_avg_loss(client_loss_data, dataset)