FS-TFP/benchmark/FedHPOBench/scripts/mlp/run_hpo_openml_mlp.sh

99 lines
3.1 KiB
Bash

set -e
cudaid=$1
dataset=$2
cd ../..
out_dir=out_${dataset}
if [ ! -d $out_dir ];then
mkdir $out_dir
fi
if [[ $dataset = '10101' ]]; then
out_channels=2
elif [[ $dataset = '53' ]]; then
out_channels=4
elif [[ $dataset = '146818' ]]; then
out_channels=2
elif [[ $dataset = '146821' ]]; then
out_channels=4
elif [[ $dataset = '9952' ]]; then
out_channels=2
elif [[ $dataset = '146822' ]]; then
out_channels=7
elif [[ $dataset = '31' ]]; then
out_channels=2
elif [[ $dataset = '3917' ]]; then
out_channels=2
elif [[ $dataset = '168912' ]]; then
out_channels=2
elif [[ $dataset = '3' ]]; then
out_channels=2
elif [[ $dataset = '167119' ]]; then
out_channels=3
elif [[ $dataset = '12' ]]; then
out_channels=10
elif [[ $dataset = '146212' ]]; then
out_channels=7
elif [[ $dataset = '168911' ]]; then
out_channels=2
elif [[ $dataset = '9981' ]]; then
out_channels=9
elif [[ $dataset = '167120' ]]; then
out_channels=2
elif [[ $dataset = '14965' ]]; then
out_channels=2
elif [[ $dataset = '146606' ]]; then
out_channels=2
elif [[ $dataset = '7592' ]]; then
out_channels=2
elif [[ $dataset = '9977' ]]; then
out_channels=2
else
out_channels=2
fi
echo "HPO starts..."
sample_rates=(1.0 0.8 0.6 0.4 0.2)
lrs=(0.00001 0.0001 0.001 0.01 0.1 1.0)
wds=(0.0 0.001 0.01 0.1)
steps=(1 2 3 4)
batch_sizes=(4 8 16 32 64 128 256)
layers=(2 3 4)
hiddens=(16 32 64 128 256 512 1024)
for (( sr=0; sr<${#sample_rates[@]}; sr++ ))
do
for (( l=0; l<${#lrs[@]}; l++ ))
do
for (( w=0; w<${#wds[@]}; w++ ))
do
for (( s=0; s<${#steps[@]}; s++ ))
do
for (( b=0; b<${#batch_sizes[@]}; b++ ))
do
for (( y=0; y<${#layers[@]}; y++ ))
do
for (( h=0; h<${#hiddens[@]}; h++ ))
do
for k in {1..3}
do
FILE="mlp/${out_dir}_${sample_rates[$sr]}/lr${lrs[$l]}_wd${wds[$w]}_dropout0_step${steps[$s]}_batch${batch_sizes[$b]}_layer${layers[$y]}_hidden${hiddens[$h]}_seed${k}"
if [ -d "$FILE" ]; then
echo "$FILE exists."
else
python main.py --cfg fedhpo/openml/openml_mlp.yaml device $cudaid optimizer.lr ${lrs[$l]} optimizer.weight_decay ${wds[$w]} federate.local_update_steps ${steps[$s]} data.type ${dataset}@openml data.batch_size ${batch_sizes[$b]} federate.sample_client_rate ${sample_rates[$sr]} model.layer ${layers[$y]} model.hidden ${hiddens[$h]} model.out_channels $out_channels seed $k outdir mlp/${out_dir}_${sample_rates[$sr]} expname lr${lrs[$l]}_wd${wds[$w]}_dropout0_step${steps[$s]}_batch${batch_sizes[$b]}_layer${layers[$y]}_hidden${hiddens[$h]}_seed${k} >/dev/null 2>&1
fi
done
done
done
done
done
done
done
done
echo "HPO ends."