FS-TFP/federatedscope/vertical_fl/dataset/adult.py

191 lines
6.8 KiB
Python

import logging
import os
import os.path as osp
import numpy as np
import pandas as pd
from torchvision.datasets.utils import download_and_extract_archive
logger = logging.getLogger(__name__)
class Adult(object):
"""
Adult Data Set
(https://archive.ics.uci.edu/ml/datasets/adult)
Fields
The dataset contains 15 columns
Training set: 'adult.data', 32561 instances
Testing set: 'adult.test', 16281 instances
Target filed: Income
-- The income is divide into two classes: <=50K and >50K
Number of attributes: 14
-- These are the demographics and other features to describe a person
Arguments:
root (str): root path
num_of_clients(int): number of clients
feature_partition(list): the number of features
partitioned to each client
tr_frac (float): train set proportion for each task; default=0.8
args (dict): set Ture or False to decide whether
to normalize or standardize the data or not,
e.g., {'normalization': False, 'standardization': False}
algo(str): the running model, 'lr'/'xgb'/'gbdt'/'rf'
debug_size(int): use a subset for debug,
0 for using entire dataset
download (bool): indicator to download dataset
seed: a random seed
"""
base_folder = 'adult'
url = 'https://federatedscope.oss-cn-beijing.aliyuncs.com/adult.zip'
raw_file = ['adult.data', 'adult.test']
def __init__(self,
root,
num_of_clients,
feature_partition,
args,
algo=None,
tr_frac=0.8,
debug_size=0,
download=True,
seed=123):
super(Adult, self).__init__()
self.root = root
self.num_of_clients = num_of_clients
self.tr_frac = tr_frac
self.feature_partition = feature_partition
self.seed = seed
self.args = args
self.algo = algo
self.data_size_for_debug = debug_size
self.data_dict = {}
self.data = {}
if download:
self.download()
self._get_data()
def _get_data(self):
fpath = os.path.join(self.root, self.base_folder)
train_file = osp.join(fpath, 'adult.data')
test_file = osp.join(fpath, 'adult.test')
train_data = self._read_raw(train_file)
test_data = self._read_raw(test_file)
train_data, test_data = self._process(train_data, test_data)
if self.data_size_for_debug != 0:
subset_size = min(len(train_data), self.data_size_for_debug)
np.random.shuffle(train_data)
train_data = train_data[:subset_size]
self._partition_data(train_data, test_data)
def _read_raw(self, file_path):
data = pd.read_csv(file_path, header=None)
return data
def _process(self, train_set, test_set):
col_labels = [
'age', 'workclass', 'fnlwgt', 'education', 'education_num',
'marital_status', 'occupation', 'relationship', 'race', 'sex',
'capital_gain', 'capital_loss', 'hours_per_week', 'native_country',
'wage_class'
]
train_set.columns = col_labels
test_set.columns = col_labels
train_set = train_set.replace(' ?', np.nan).dropna()
test_set = test_set.replace(' ?', np.nan).dropna()
test_set['wage_class'] = test_set.wage_class.replace({
' <=50K.': ' <=50K',
' >50K.': ' >50K'
})
combined_set = pd.concat([train_set, test_set], axis=0)
for feature in combined_set.columns:
if combined_set[feature].dtype == 'object':
combined_set[feature] = pd.Categorical(
combined_set[feature]).codes
train_set = combined_set[:train_set.shape[0]]
test_set = combined_set[train_set.shape[0]:]
train_set = train_set.values
test_set = test_set.values
return train_set, test_set
# normalization
def normalization(self, data):
_range = np.max(data) - np.min(data)
return (data - np.min(data)) / _range
# standardization
def standardization(self, data):
mu = np.mean(data, axis=0)
sigma = np.std(data, axis=0)
return (data - mu) / sigma
def _partition_data(self, train_set, test_set):
x, y = train_set[:, :-1], train_set[:, -1]
test_x, test_y = test_set[:, :-1], test_set[:, -1]
# change the labels from 0 to -1 to fit the 'lr' model
if self.algo == 'lr':
for i in range(len(y)):
if y[i] == 0:
y[i] = -1
for i in range(len(test_y)):
if test_y[i] == 0:
test_y[i] = -1
if self.args['normalization']:
x = self.normalization(x)
test_x = self.normalization(test_x)
if self.args['standardization']:
x = self.standardization(x)
test_x = self.standardization(test_x)
test_data = {'x': test_x, 'y': test_y}
self.data = dict()
for i in range(self.num_of_clients + 1):
self.data[i] = dict()
if i == 0:
self.data[0]['train'] = None
self.data[0]['test'] = test_data
elif i == 1:
self.data[1]['train'] = {'x': x[:, :self.feature_partition[0]]}
self.data[1]['test'] = {
'x': test_x[:, :self.feature_partition[0]]
}
else:
self.data[i]['train'] = {
'x': x[:,
self.feature_partition[i -
2]:self.feature_partition[i -
1]]
}
self.data[i]['test'] = {
'x': test_x[:, self.feature_partition[i - 2]:self.
feature_partition[i - 1]]
}
self.data[i]['val'] = None
self.data[self.num_of_clients]['train']['y'] = y[:]
self.data[self.num_of_clients]['test']['y'] = test_y[:]
def _check_existence(self, file):
fpath = os.path.join(self.root, self.base_folder, file)
return osp.exists(fpath)
def download(self):
for file in self.raw_file:
if self._check_existence(file):
logger.info(file + " files already exist")
else:
download_and_extract_archive(self.url,
os.path.join(
self.root, self.base_folder),
filename=self.url.split('/')[-1])