FS-TFP/tests/test_external_dataset.py

151 lines
5.2 KiB
Python

# Copyright (c) Alibaba, Inc. and its affiliates.
import unittest
from federatedscope.core.auxiliaries.data_builder import get_data
from federatedscope.core.auxiliaries.utils import setup_seed
from federatedscope.core.auxiliaries.logging import update_logger
from federatedscope.core.configs.config import global_cfg
from federatedscope.core.auxiliaries.runner_builder import get_runner
from federatedscope.core.auxiliaries.worker_builder import get_server_cls, get_client_cls
class ExternalDatasetTest(unittest.TestCase):
def setUp(self):
print(('Testing %s.%s' % (type(self).__name__, self._testMethodName)))
def set_config_torchvision_dataset(self, cfg):
backup_cfg = cfg.clone()
import torch
cfg.use_gpu = torch.cuda.is_available()
cfg.eval.freq = 10
cfg.eval.metrics = ['acc']
cfg.federate.mode = 'standalone'
cfg.train.local_update_steps = 1
cfg.federate.total_round_num = 20
cfg.train.batch_or_epoch = 'epoch'
cfg.federate.client_num = 5
cfg.federate.sample_client_rate = 0.2
cfg.federate.share_local_model = True
cfg.federate.online_aggr = True
cfg.data.root = 'test_data/'
cfg.data.type = 'MNIST@torchvision'
cfg.data.args = [{'download': True}]
cfg.data.splits = [0.6, 0.2, 0.2]
cfg.data.batch_size = 10
cfg.data.transform = [['ToTensor'],
[
'Normalize', {
'mean': [0.9637],
'std': [0.1592]
}
]]
cfg.data.splitter = 'lda'
cfg.data.splitter_args = [{'alpha': 0.5}]
cfg.model.type = 'convnet2'
cfg.model.hidden = 2048
cfg.model.out_channels = 10
cfg.train.optimizer.lr = 0.01
cfg.train.optimizer.weight_decay = 0.0
cfg.grad.grad_clip = 5.0
cfg.criterion.type = 'CrossEntropyLoss'
cfg.trainer.type = 'cvtrainer'
cfg.seed = 12345
return backup_cfg
def set_config_torchtext_dataset(self, cfg):
backup_cfg = cfg.clone()
import torch
cfg.use_gpu = torch.cuda.is_available()
cfg.eval.freq = 10
cfg.eval.metrics = ['acc']
cfg.federate.mode = 'standalone'
cfg.train.local_update_steps = 1
cfg.federate.total_round_num = 10
cfg.train.batch_or_epoch = 'epoch'
cfg.federate.client_num = 5
cfg.federate.sample_client_rate = 0.2
cfg.federate.share_local_model = True
cfg.federate.online_aggr = True
cfg.data.root = 'test_data/'
cfg.data.args = [{'max_len': 100}]
cfg.data.type = 'IMDB@torchtext'
cfg.data.splits = [0.6, 0.2, 0.2]
cfg.data.batch_size = 10
cfg.data.transform = ['GloVe', {'cache': 'test_data/', 'name': '6B'}]
cfg.data.splitter = 'lda'
cfg.data.splitter_args = [{'alpha': 0.5}]
cfg.model.type = 'lstm'
cfg.model.task = 'SequenceClassification'
cfg.model.hidden = 256
cfg.model.in_channels = 300
cfg.model.embed_size = 0
cfg.model.out_channels = 2
cfg.train.optimizer.lr = 0.8
cfg.train.optimizer.weight_decay = 0.0
cfg.criterion.type = 'CrossEntropyLoss'
cfg.trainer.type = 'nlptrainer'
cfg.seed = 12345
return backup_cfg
def test_torchvision_dataset_standalone(self):
init_cfg = global_cfg.clone()
backup_cfg = self.set_config_torchvision_dataset(init_cfg)
setup_seed(init_cfg.seed)
update_logger(init_cfg, True)
data, modified_cfg = get_data(init_cfg.clone())
init_cfg.merge_from_other_cfg(modified_cfg)
self.assertIsNotNone(data)
Fed_runner = get_runner(data=data,
server_class=get_server_cls(init_cfg),
client_class=get_client_cls(init_cfg),
config=init_cfg.clone())
self.assertIsNotNone(Fed_runner)
test_best_results = Fed_runner.run()
print(test_best_results)
init_cfg.merge_from_other_cfg(backup_cfg)
self.assertGreater(
test_best_results["client_summarized_weighted_avg"]['test_acc'],
0.9)
def test_torchtext_dataset_standalone(self):
init_cfg = global_cfg.clone()
backup_cfg = self.set_config_torchtext_dataset(init_cfg)
setup_seed(init_cfg.seed)
update_logger(init_cfg, True)
data, modified_cfg = get_data(init_cfg.clone())
init_cfg.merge_from_other_cfg(modified_cfg)
self.assertIsNotNone(data)
Fed_runner = get_runner(data=data,
server_class=get_server_cls(init_cfg),
client_class=get_client_cls(init_cfg),
config=init_cfg.clone())
self.assertIsNotNone(Fed_runner)
test_best_results = Fed_runner.run()
print(test_best_results)
init_cfg.merge_from_other_cfg(backup_cfg)
self.assertGreater(
test_best_results["client_summarized_weighted_avg"]['test_acc'],
0.6)
if __name__ == '__main__':
unittest.main()