framework

This commit is contained in:
harry.zhang 2025-09-01 15:25:50 +08:00
parent 568fff7e99
commit 19a02ba7ae
11 changed files with 1242 additions and 0 deletions

13
data/data_selector.py Normal file
View File

@ -0,0 +1,13 @@
import numpy as np
import os
def load_dataset(config):
dataset_name = config['basic']['dataset']
node_num = config['data']['num_nodes']
input_dim = config['data']['input_dim']
data = None
match dataset_name:
case 'EcoSolar':
data_path = os.path.join('./data/EcoSolar.npy')
data = np.load(data_path)[:, :node_num, :input_dim]
return data

170
data/dataloader.py Normal file
View File

@ -0,0 +1,170 @@
from utils.normalizer import normalize_dataset
import numpy as np
import gc
import torch
def get_dataloader(config, data):
config = config['data']
L, N, F = data.shape # 数据形状
# Step 1: data -> x,y
x = add_window_x(data, config['lag'], config['horizon'])
y = add_window_y(data, config['lag'], config['horizon'])
del data
gc.collect()
# Step 2: time_in_day, day_in_week -> day, week
time_in_day = [i % config['steps_per_day'] / config['steps_per_day'] for i in range(L)]
time_in_day = np.tile(np.array(time_in_day), [1, N, 1]).transpose((2, 1, 0))
day_in_week = [(i // config['steps_per_day']) % config['days_per_week'] for i in range(L)]
day_in_week = np.tile(np.array(day_in_week), [1, N, 1]).transpose((2, 1, 0))
x_day = add_window_x(time_in_day, config['lag'], config['horizon'])
x_week = add_window_x(day_in_week, config['lag'], config['horizon'])
# Step 3 day, week, x, y --> x, y
x = np.concatenate([x, x_day, x_week], axis=-1)
del x_day, x_week
gc.collect()
# Step 4 x,y --> x_train, x_val, x_test, y_train, y_val, y_test
if config['test_ratio'] > 1:
x_train, x_val, x_test = split_data_by_days(x, config['val_ratio'], config['test_ratio'])
else:
x_train, x_val, x_test = split_data_by_ratio(x, config['val_ratio'], config['test_ratio'])
del x
gc.collect()
# Multi-channel normalization - each channel normalized independently
input_channels = x_train[..., :config['input_dim']]
num_channels = input_channels.shape[-1]
# Initialize scalers for each channel
scalers = []
# Normalize each channel independently
for channel_idx in range(num_channels):
channel_data = input_channels[..., channel_idx:channel_idx+1]
scaler = normalize_dataset(channel_data, config['normalizer'], config['column_wise'])
scalers.append(scaler)
# Apply transformation to each channel
x_train[..., channel_idx:channel_idx+1] = scaler.transform(channel_data)
x_val[..., channel_idx:channel_idx+1] = scaler.transform(x_val[..., channel_idx:channel_idx+1])
x_test[..., channel_idx:channel_idx+1] = scaler.transform(x_test[..., channel_idx:channel_idx+1])
y_day = add_window_y(time_in_day, config['lag'], config['horizon'])
y_week = add_window_y(day_in_week, config['lag'], config['horizon'])
del time_in_day, day_in_week
gc.collect()
y = np.concatenate([y, y_day, y_week], axis=-1)
del y_day, y_week
gc.collect()
# Split Y
if config['test_ratio'] > 1:
y_train, y_val, y_test = split_data_by_days(y, config['val_ratio'], config['test_ratio'])
else:
y_train, y_val, y_test = split_data_by_ratio(y, config['val_ratio'], config['test_ratio'])
del y
gc.collect()
# Step 5: x_train y_train x_val y_val x_test y_test --> train val test
# train_dataloader = data_loader(x_train[..., :args['input_dim']], y_train[..., :args['input_dim']], args['batch_size'], shuffle=True, drop_last=True)
train_dataloader = data_loader(x_train, y_train, config['batch_size'], shuffle=True, drop_last=True)
del x_train, y_train
gc.collect()
# val_dataloader = data_loader(x_val[..., :args['input_dim']], y_val[..., :args['input_dim']], args['batch_size'], shuffle=False, drop_last=True)
val_dataloader = data_loader(x_val, y_val, config['batch_size'], shuffle=False, drop_last=True)
del x_val, y_val
gc.collect()
# test_dataloader = data_loader(x_test[..., :args['input_dim']], y_test[..., :args['input_dim']], args['batch_size'], shuffle=False, drop_last=False)
test_dataloader = data_loader(x_test, y_test, config['batch_size'], shuffle=False, drop_last=False)
del x_test, y_test
gc.collect()
return train_dataloader, val_dataloader, test_dataloader, scalers
def split_data_by_days(data, val_days, test_days, interval=30):
t = int((24 * 60) / interval)
test_data = data[-t * int(test_days):]
val_data = data[-t * int(test_days + val_days):-t * int(test_days)]
train_data = data[:-t * int(test_days + val_days)]
return train_data, val_data, test_data
def split_data_by_ratio(data, val_ratio, test_ratio):
data_len = data.shape[0]
test_data = data[-int(data_len * test_ratio):]
val_data = data[-int(data_len * (test_ratio + val_ratio)):-int(data_len * test_ratio)]
train_data = data[:-int(data_len * (test_ratio + val_ratio))]
return train_data, val_data, test_data
def data_loader(X, Y, batch_size, shuffle=True, drop_last=True):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
X = torch.tensor(X, dtype=torch.float32, device=device)
Y = torch.tensor(Y, dtype=torch.float32, device=device)
data = torch.utils.data.TensorDataset(X, Y)
dataloader = torch.utils.data.DataLoader(data, batch_size=batch_size,
shuffle=shuffle, drop_last=drop_last)
return dataloader
def add_window_x(data, window=3, horizon=1, single=False):
"""
Generate windowed X values from the input data.
:param data: Input data, shape [B, ...]
:param window: Size of the sliding window
:param horizon: Horizon size
:param single: If True, generate single-step windows, else multi-step
:return: X with shape [B, W, ...]
"""
length = len(data)
end_index = length - horizon - window + 1
x = [] # Sliding windows
index = 0
while index < end_index:
x.append(data[index:index + window])
index += 1
return np.array(x)
def add_window_y(data, window=3, horizon=1, single=False):
"""
Generate windowed Y values from the input data.
:param data: Input data, shape [B, ...]
:param horizon: Horizon size
:param single: If True, generate single-step windows, else multi-step
:return: Y with shape [B, H, ...]
"""
length = len(data)
end_index = length - horizon - window + 1
y = [] # Horizon values
index = 0
while index < end_index:
if single:
y.append(data[index + window + horizon - 1:index + window + horizon])
else:
y.append(data[index + window:index + window + horizon])
index += 1
return np.array(y)

35
main.py Normal file
View File

@ -0,0 +1,35 @@
#!/usr/bin/env python3
"""
时空数据深度学习预测项目主程序
专门处理时空数据格式 (batch_size, seq_len, num_nodes, features)
"""
import os
from utils.args_reader import config_loader
import utils.init as init
import torch
def main():
config = config_loader()
device = config['basic']['device'] = init.device(config['basic']['device'])
init.seed(config['basic']['seed'])
model = init.model(config)
train_loader, val_loader, test_loader, scaler = init.dataloader(config)
loss = init.loss(config, scaler)
optim, lr = init.optimizer(config, model)
logger = init.Logger(config)
trainer = init.trainer(config, model, loss, optim, train_loader, val_loader, test_loader, scaler, logger, lr)
match config['basic']['mode']:
case 'train':
trainer.train()
case 'test':
params_path = f"./pre-trained/{config['basic']['model']}/{config['basic']['dataset']}.pth"
params = torch.load(params_path, map_location=device, weights_only=True)
model.load_state_dict(params)
trainer.test(model.to(device), config, test_loader, scaler, trainer.logger)
if __name__ == "__main__":
main()

6
models/model_selector.py Normal file
View File

@ -0,0 +1,6 @@
def model_selector(config):
model_name = config['basic']['model']
model = None
return model

519
trainer/trainer.py Normal file
View File

@ -0,0 +1,519 @@
import math
import os
import time
import copy
from tqdm import tqdm
import torch
class Trainer:
def __init__(self, config, model, loss, optimizer, train_loader, val_loader, test_loader,
scalers, logger, lr_scheduler=None):
self.model = model
self.loss = loss
self.optimizer = optimizer
self.train_loader = train_loader
self.val_loader = val_loader
self.test_loader = test_loader
self.scalers = scalers # 现在是多个标准化器的列表
self.args = config['train']
self.logger = logger
self.args['device'] = config['basic']['device']
self.lr_scheduler = lr_scheduler
self.train_per_epoch = len(train_loader)
self.val_per_epoch = len(val_loader) if val_loader else 0
self.best_path = os.path.join(logger.dir_path, 'best_model.pth')
self.best_test_path = os.path.join(logger.dir_path, 'best_test_model.pth')
self.loss_figure_path = os.path.join(logger.dir_path, 'loss.png')
def _run_epoch(self, epoch, dataloader, mode):
if mode == 'train':
self.model.train()
optimizer_step = True
else:
self.model.eval()
optimizer_step = False
total_loss = 0
epoch_time = time.time()
with torch.set_grad_enabled(optimizer_step):
with tqdm(total=len(dataloader), desc=f'{mode.capitalize()} Epoch {epoch}') as pbar:
for batch_idx, (data, target) in enumerate(dataloader):
label = target[..., :self.args['output_dim']]
output = self.model(data).to(self.args['device'])
if self.args['real_value']:
# 只对输出维度进行反归一化
output = self._inverse_transform_output(output)
loss = self.loss(output, label)
if optimizer_step and self.optimizer is not None:
self.optimizer.zero_grad()
loss.backward()
if self.args['grad_norm']:
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args['max_grad_norm'])
self.optimizer.step()
total_loss += loss.item()
if mode == 'train' and (batch_idx + 1) % self.args['log_step'] == 0:
self.logger.info(
f'Train Epoch {epoch}: {batch_idx + 1}/{len(dataloader)} Loss: {loss.item():.6f}')
# 更新 tqdm 的进度
pbar.update(1)
pbar.set_postfix(loss=loss.item())
avg_loss = total_loss / len(dataloader)
self.logger.logger.info(
f'{mode.capitalize()} Epoch {epoch}: average Loss: {avg_loss:.6f}, time: {time.time() - epoch_time:.2f} s')
return avg_loss
def _inverse_transform_output(self, output):
"""
只对输出维度进行反归一化
假设输出数据形状为 [batch, horizon, nodes, features]
只对前output_dim个特征进行反归一化
"""
if not self.args['real_value']:
return output
# 获取输出维度的数量
output_dim = self.args['output_dim']
# 如果输出特征数小于等于标准化器数量,直接使用对应的标准化器
if output_dim <= len(self.scalers):
# 对每个输出特征分别进行反归一化
for feature_idx in range(output_dim):
if feature_idx < len(self.scalers):
output[..., feature_idx:feature_idx+1] = self.scalers[feature_idx].inverse_transform(
output[..., feature_idx:feature_idx+1]
)
else:
# 如果输出特征数大于标准化器数量只对前len(scalers)个特征进行反归一化
for feature_idx in range(len(self.scalers)):
output[..., feature_idx:feature_idx+1] = self.scalers[feature_idx].inverse_transform(
output[..., feature_idx:feature_idx+1]
)
return output
def train_epoch(self, epoch):
return self._run_epoch(epoch, self.train_loader, 'train')
def val_epoch(self, epoch):
return self._run_epoch(epoch, self.val_loader or self.test_loader, 'val')
def test_epoch(self, epoch):
return self._run_epoch(epoch, self.test_loader, 'test')
def train(self):
best_model, best_test_model = None, None
best_loss, best_test_loss = float('inf'), float('inf')
not_improved_count = 0
self.logger.logger.info("Training process started")
for epoch in range(1, self.args['epochs'] + 1):
train_epoch_loss = self.train_epoch(epoch)
val_epoch_loss = self.val_epoch(epoch)
test_epoch_loss = self.test_epoch(epoch)
if train_epoch_loss > 1e6:
self.logger.logger.warning('Gradient explosion detected. Ending...')
break
if val_epoch_loss < best_loss:
best_loss = val_epoch_loss
not_improved_count = 0
best_model = copy.deepcopy(self.model.state_dict())
torch.save(best_model, self.best_path)
self.logger.logger.info('Best validation model saved!')
else:
not_improved_count += 1
if self.args['early_stop'] and not_improved_count == self.args['early_stop_patience']:
self.logger.logger.info(
f"Validation performance didn't improve for {self.args['early_stop_patience']} epochs. Training stops.")
break
if test_epoch_loss < best_test_loss:
best_test_loss = test_epoch_loss
best_test_model = copy.deepcopy(self.model.state_dict())
torch.save(best_test_model, self.best_test_path)
if not self.args['debug']:
torch.save(best_model, self.best_path)
torch.save(best_test_model, self.best_test_path)
self.logger.logger.info(f"Best models saved at {self.best_path} and {self.best_test_path}")
self._finalize_training(best_model, best_test_model)
def _finalize_training(self, best_model, best_test_model):
self.model.load_state_dict(best_model)
self.logger.logger.info("Testing on best validation model")
self.test(self.model, self.args, self.test_loader, self.scalers, self.logger, generate_viz=False)
self.model.load_state_dict(best_test_model)
self.logger.logger.info("Testing on best test model")
self.test(self.model, self.args, self.test_loader, self.scalers, self.logger, generate_viz=True)
@staticmethod
def test(model, args, data_loader, scalers, logger, path=None, generate_viz=True):
if path:
checkpoint = torch.load(path)
model.load_state_dict(checkpoint['state_dict'])
model.to(args.device)
model.eval()
y_pred, y_true = [], []
with torch.no_grad():
for data, target in data_loader:
label = target[..., :args['output_dim']]
output = model(data)
y_pred.append(output)
y_true.append(label)
if args['real_value']:
# 只对输出维度进行反归一化
y_pred = Trainer._inverse_transform_output_static(torch.cat(y_pred, dim=0), args, scalers)
else:
y_pred = torch.cat(y_pred, dim=0)
y_true = torch.cat(y_true, dim=0)
# 计算每个时间步的指标
for t in range(y_true.shape[1]):
mae, rmse, mape = logger.all_metrics(y_pred[:, t, ...], y_true[:, t, ...],
args['mae_thresh'], args['mape_thresh'])
logger.logger.info(f"Horizon {t + 1:02d}, MAE: {mae:.4f}, RMSE: {rmse:.4f}, MAPE: {mape:.4f}")
mae, rmse, mape = logger.all_metrics(y_pred, y_true, args['mae_thresh'], args['mape_thresh'])
logger.logger.info(f"Average Horizon, MAE: {mae:.4f}, RMSE: {rmse:.4f}, MAPE: {mape:.4f}")
# 只在需要时生成可视化图片
if generate_viz:
save_dir = logger.dir_path if hasattr(logger, 'dir_path') else './logs'
Trainer._generate_node_visualizations(y_pred, y_true, logger, save_dir)
Trainer._generate_input_output_comparison(y_pred, y_true, data_loader, logger, save_dir,
target_node=1, num_samples=10, scalers=scalers)
@staticmethod
def _inverse_transform_output_static(output, args, scalers):
"""
静态方法只对输出维度进行反归一化
"""
if not args['real_value']:
return output
# 获取输出维度的数量
output_dim = args['output_dim']
# 如果输出特征数小于等于标准化器数量,直接使用对应的标准化器
if output_dim <= len(scalers):
# 对每个输出特征分别进行反归一化
for feature_idx in range(output_dim):
if feature_idx < len(scalers):
output[..., feature_idx:feature_idx+1] = scalers[feature_idx].inverse_transform(
output[..., feature_idx:feature_idx+1]
)
else:
# 如果输出特征数大于标准化器数量只对前len(scalers)个特征进行反归一化
for feature_idx in range(len(scalers)):
output[..., feature_idx:feature_idx+1] = scalers[feature_idx].inverse_transform(
output[..., feature_idx:feature_idx+1]
)
return output
@staticmethod
def _generate_node_visualizations(y_pred, y_true, logger, save_dir):
"""
生成节点预测可视化图片
Args:
y_pred: 预测值
y_true: 真实值
logger: 日志记录器
save_dir: 保存目录
"""
import matplotlib.pyplot as plt
import numpy as np
import os
import matplotlib
from tqdm import tqdm
# 设置matplotlib配置减少字体查找输出
matplotlib.set_loglevel('error') # 只显示错误信息
plt.rcParams['font.family'] = 'DejaVu Sans' # 使用默认字体
# 检查数据有效性
if y_pred is None or y_true is None:
return
# 创建pic文件夹
pic_dir = os.path.join(save_dir, 'pic')
os.makedirs(pic_dir, exist_ok=True)
# 固定生成10张图片
num_nodes_to_plot = 10
# 生成单个节点的详细图
with tqdm(total=num_nodes_to_plot, desc="Generating node visualizations") as pbar:
for node_id in range(num_nodes_to_plot):
# 获取对应节点的数据
if len(y_pred.shape) > 2 and y_pred.shape[-2] > node_id:
# 数据格式: [time_step, seq_len, num_node, dim]
node_pred = y_pred[:, 12, node_id, 0].cpu().numpy() # t=1时刻指定节点第一个特征
node_true = y_true[:, 12, node_id, 0].cpu().numpy()
else:
# 如果数据不足10个节点只处理实际存在的节点
if node_id >= y_pred.shape[-2]:
pbar.update(1)
continue
else:
node_pred = y_pred[:, 0, node_id, 0].cpu().numpy()
node_true = y_true[:, 0, node_id, 0].cpu().numpy()
# 检查数据有效性
if np.isnan(node_pred).any() or np.isnan(node_true).any():
pbar.update(1)
continue
# 取前500个时间步
max_steps = min(500, len(node_pred))
if max_steps <= 0:
pbar.update(1)
continue
node_pred_500 = node_pred[:max_steps]
node_true_500 = node_true[:max_steps]
# 创建时间轴
time_steps = np.arange(max_steps)
# 绘制对比图
plt.figure(figsize=(12, 6))
plt.plot(time_steps, node_true_500, 'b-', label='True Values', linewidth=2, alpha=0.8)
plt.plot(time_steps, node_pred_500, 'r-', label='Predictions', linewidth=2, alpha=0.8)
plt.xlabel('Time Steps')
plt.ylabel('Values')
plt.title(f'Node {node_id + 1}: True vs Predicted Values (First {max_steps} Time Steps)')
plt.legend()
plt.grid(True, alpha=0.3)
# 保存图片,使用不同的命名
save_path = os.path.join(pic_dir, f'node{node_id + 1:02d}_prediction_first500.png')
plt.savefig(save_path, dpi=300, bbox_inches='tight')
plt.close()
pbar.update(1)
# 生成所有节点的对比图前100个时间步便于观察
# 选择前100个时间步
plot_steps = min(100, y_pred.shape[0])
if plot_steps <= 0:
return
# 创建子图
fig, axes = plt.subplots(2, 5, figsize=(20, 8))
axes = axes.flatten()
for node_id in range(num_nodes_to_plot):
if len(y_pred.shape) > 2 and y_pred.shape[-2] > node_id:
# 数据格式: [time_step, seq_len, num_node, dim]
node_pred = y_pred[:plot_steps, 0, node_id, 0].cpu().numpy()
node_true = y_true[:plot_steps, 0, node_id, 0].cpu().numpy()
else:
# 如果数据不足10个节点只处理实际存在的节点
if node_id >= y_pred.shape[-2]:
axes[node_id].text(0.5, 0.5, f'Node {node_id + 1}\nNo Data',
ha='center', va='center', transform=axes[node_id].transAxes)
continue
else:
node_pred = y_pred[:plot_steps, 0, node_id, 0].cpu().numpy()
node_true = y_true[:plot_steps, 0, node_id, 0].cpu().numpy()
# 检查数据有效性
if np.isnan(node_pred).any() or np.isnan(node_true).any():
axes[node_id].text(0.5, 0.5, f'Node {node_id + 1}\nNo Data',
ha='center', va='center', transform=axes[node_id].transAxes)
continue
time_steps = np.arange(plot_steps)
axes[node_id].plot(time_steps, node_true, 'b-', label='True', linewidth=1.5, alpha=0.8)
axes[node_id].plot(time_steps, node_pred, 'r-', label='Pred', linewidth=1.5, alpha=0.8)
axes[node_id].set_title(f'Node {node_id + 1}')
axes[node_id].grid(True, alpha=0.3)
axes[node_id].legend(fontsize=8)
if node_id >= 5: # 下面一行添加x轴标签
axes[node_id].set_xlabel('Time Steps')
if node_id % 5 == 0: # 左边一列添加y轴标签
axes[node_id].set_ylabel('Values')
plt.tight_layout()
summary_path = os.path.join(pic_dir, 'all_nodes_summary.png')
plt.savefig(summary_path, dpi=300, bbox_inches='tight')
plt.close()
@staticmethod
def _generate_input_output_comparison(y_pred, y_true, data_loader, logger, save_dir,
target_node=1, num_samples=10, scalers=None):
"""
生成输入-输出样本比较图
Args:
y_pred: 预测值
y_true: 真实值
data_loader: 数据加载器用于获取输入数据
logger: 日志记录器
save_dir: 保存目录
target_node: 目标节点ID从1开始
num_samples: 要比较的样本数量
scalers: 标准化器列表用于反归一化输入数据
"""
import matplotlib.pyplot as plt
import numpy as np
import os
import matplotlib
from tqdm import tqdm
# 设置matplotlib配置
matplotlib.set_loglevel('error')
plt.rcParams['font.family'] = 'DejaVu Sans'
# 创建compare文件夹
compare_dir = os.path.join(save_dir, 'pic', 'compare')
os.makedirs(compare_dir, exist_ok=True)
# 获取输入数据
input_data = []
for batch_idx, (data, target) in enumerate(data_loader):
if batch_idx >= num_samples:
break
input_data.append(data.cpu().numpy())
if not input_data:
return
# 获取目标节点的索引从0开始
node_idx = target_node - 1
# 检查节点索引是否有效
if node_idx >= y_pred.shape[-2]:
return
# 为每个样本生成比较图
with tqdm(total=min(num_samples, len(input_data)), desc="Generating input-output comparisons") as pbar:
for sample_idx in range(min(num_samples, len(input_data))):
# 获取输入序列(假设输入形状为 [batch, seq_len, nodes, features]
input_seq = input_data[sample_idx][0, :, node_idx, 0] # 第一个batch所有时间步目标节点第一个特征
# 对输入数据进行反归一化
if scalers is not None and len(scalers) > 0:
# 使用第一个标准化器对输入进行反归一化(假设输入特征使用第一个标准化器)
input_seq = scalers[0].inverse_transform(input_seq.reshape(-1, 1)).flatten()
# 获取对应的预测值和真实值
pred_seq = y_pred[sample_idx, :, node_idx, 0].cpu().numpy() # 所有horizon目标节点第一个特征
true_seq = y_true[sample_idx, :, node_idx, 0].cpu().numpy()
# 检查数据有效性
if (np.isnan(input_seq).any() or np.isnan(pred_seq).any() or np.isnan(true_seq).any()):
pbar.update(1)
continue
# 创建时间轴 - 输入和输出连续
total_time = np.arange(len(input_seq) + len(pred_seq))
# 创建合并的图形 - 输入和输出在同一个图中
plt.figure(figsize=(14, 8))
# 绘制完整的真实值曲线(输入 + 真实输出)
true_combined = np.concatenate([input_seq, true_seq])
plt.plot(total_time, true_combined, 'b', label='True Values (Input + Output)',
linewidth=2.5, alpha=0.9, linestyle='-')
# 绘制预测值曲线(只绘制输出部分)
output_time = np.arange(len(input_seq), len(input_seq) + len(pred_seq))
plt.plot(output_time, pred_seq, 'r', label='Predicted Values',
linewidth=2, alpha=0.8, linestyle='-')
# 添加垂直线分隔输入和输出
plt.axvline(x=len(input_seq)-0.5, color='gray', linestyle=':', alpha=0.7,
label='Input/Output Boundary')
# 设置图形属性
plt.xlabel('Time Steps')
plt.ylabel('Values')
plt.title(f'Sample {sample_idx + 1}: Input-Output Comparison (Node {target_node})')
plt.legend()
plt.grid(True, alpha=0.3)
# 调整布局
plt.tight_layout()
# 保存图片
save_path = os.path.join(compare_dir, f'sample{sample_idx + 1:02d}_node{target_node:02d}_comparison.png')
plt.savefig(save_path, dpi=300, bbox_inches='tight')
plt.close()
pbar.update(1)
# 生成汇总图(所有样本的预测值对比)
fig, axes = plt.subplots(2, 5, figsize=(20, 8))
axes = axes.flatten()
for sample_idx in range(min(num_samples, len(input_data))):
if sample_idx >= 10: # 最多显示10个子图
break
ax = axes[sample_idx]
# 获取输入序列和预测值、真实值
input_seq = input_data[sample_idx][0, :, node_idx, 0]
if scalers is not None and len(scalers) > 0:
input_seq = scalers[0].inverse_transform(input_seq.reshape(-1, 1)).flatten()
pred_seq = y_pred[sample_idx, :, node_idx, 0].cpu().numpy()
true_seq = y_true[sample_idx, :, node_idx, 0].cpu().numpy()
# 检查数据有效性
if np.isnan(input_seq).any() or np.isnan(pred_seq).any() or np.isnan(true_seq).any():
ax.text(0.5, 0.5, f'Sample {sample_idx + 1}\nNo Data',
ha='center', va='center', transform=ax.transAxes)
continue
# 绘制对比图 - 输入和输出连续显示
total_time = np.arange(len(input_seq) + len(pred_seq))
true_combined = np.concatenate([input_seq, true_seq])
output_time = np.arange(len(input_seq), len(input_seq) + len(pred_seq))
ax.plot(total_time, true_combined, 'b', label='True', linewidth=2, alpha=0.9, linestyle='-')
ax.plot(output_time, pred_seq, 'r', label='Pred', linewidth=1.5, alpha=0.8, linestyle='-')
ax.axvline(x=len(input_seq)-0.5, color='gray', linestyle=':', alpha=0.5)
ax.set_title(f'Sample {sample_idx + 1}')
ax.grid(True, alpha=0.3)
ax.legend(fontsize=8)
if sample_idx >= 5: # 下面一行添加x轴标签
ax.set_xlabel('Time Steps')
if sample_idx % 5 == 0: # 左边一列添加y轴标签
ax.set_ylabel('Values')
# 隐藏多余的子图
for i in range(min(num_samples, len(input_data)), 10):
axes[i].set_visible(False)
plt.tight_layout()
summary_path = os.path.join(compare_dir, f'all_samples_node{target_node:02d}_summary.png')
plt.savefig(summary_path, dpi=300, bbox_inches='tight')
plt.close()
@staticmethod
def _compute_sampling_threshold(global_step, k):
return k / (k + math.exp(global_step / k))

View File

@ -0,0 +1,11 @@
from trainer.trainer import Trainer
def select_trainer(config, model, loss, optimizer, train_loader, val_loader, test_loader, scaler,
lr_scheduler, kwargs):
model_name = config['basic']['model']
selected_Trainer = None
match model_name:
case _: selected_Trainer = Trainer(config, model, loss, optimizer,
train_loader, val_loader, test_loader, scaler,lr_scheduler)
if selected_Trainer is None: raise NotImplementedError
return selected_Trainer

12
utils/args_reader.py Normal file
View File

@ -0,0 +1,12 @@
import argparse
import yaml
def config_loader():
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./config/DDGCRN_config.yaml")
config_path = parser.parse_args().config
with open(config_path, "r") as f:
config = yaml.safe_load(f)
return config

173
utils/init.py Normal file
View File

@ -0,0 +1,173 @@
import os
import torch
import torch.nn as nn
import random
import yaml
import logging
from datetime import datetime
import numpy as np
from models.model_selector import model_selector
from data.data_selector import load_dataset
from data.dataloader import get_dataloader
import utils.loss_func as loss_func
from trainer.trainer_selector import select_trainer
def seed(seed : int):
""" 固定随机种子以公平测试 """
torch.cuda.cudnn_enabled = False
torch.backends.cudnn.deterministic = True
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# print(f"seed is {seed}")
def device(device : str):
"""初始化使用设备"""
if torch.cuda.is_available() and device != 'cpu':
torch.cuda.set_device(int(device.split(':')[1]))
return device
else:
return 'cpu'
def model(config : dict):
"""选择模型"""
device = config['basic']['device']
model = model_selector(config).to(device)
for p in model.parameters():
if p.dim() > 1: nn.init.xavier_uniform_(p)
else: nn.init.uniform_(p)
total_params = sum(p.numel() for p in model.parameters())
print(f"Model param count : {total_params}")
return model
def dataloader(config : dict):
"""初始化dataloader"""
data = load_dataset(config)
train_loader, val_loader, test_loader, scaler = get_dataloader(config, data)
return train_loader, val_loader, test_loader, scaler
def loss(config : dict, scaler):
loss_name = config['train']['loss']
device = config['basic']['device']
match loss_name :
case 'mask_mae': func = loss_func.masked_mae_loss(scaler, mask_value=0.0)
case 'mae': func = torch.nn.L1Loss()
case 'mse': func = torch.nn.MSELoss()
case 'Huber': func = torch.nn.HuberLoss()
case _ : raise NotImplementedError('No Loss Func')
return func.to(device)
def optimizer(config, model):
optimizer = torch.optim.Adam(
params=model.parameters(),
lr=config['train']['lr_init'],
eps=1.0e-8,
weight_decay=config['train']['weight_decay'],
amsgrad=False
)
lr_scheduler = None
if config['train']['lr_decay']:
lr_decay_steps = [int(step) for step in config['train']['lr_decay_step'].split(',')]
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer=optimizer,
milestones=lr_decay_steps,
gamma=config['train']['lr_decay_rate']
)
return optimizer, lr_scheduler
def trainer(config, model, loss, optimizer,
train_loader, val_loader, test_loader,
scaler, lr_scheduler, kwargs):
selected_trainer = select_trainer(config, model, loss, optimizer,
train_loader, val_loader, test_loader, scaler, lr_scheduler, kwargs)
return selected_trainer
class Logger:
"""
Logger类主要调用成员对象logger的info方法来记录
使用logger的all_metrics返回所有损失
"""
def __init__(self, config, name=None, debug = True):
self.config = config
cur_time = datetime.now().strftime("%Y/%m/%d-%H:%M:%S")
cur_dir = os.getcwd()
dataset_name = config['basic']['dataset']
model_name = config['basic']['model']
self.dir_path = os.path.join(cur_dir, 'exp', f'{dataset_name}_{model_name}_{cur_time}')
config['train']['log_dir'] = self.dir_path
os.makedirs(self.dir_path, exist_ok=True)
# 生成配置并添加到目录
config_content = yaml.safe_dump(config)
config_path = os.path.join(self.dir_path, "config.yaml")
with open(config_path, 'w') as f:
f.write(config_content)
# logger
self.logger = logging.getLogger(name)
self.logger.setLevel(logging.DEBUG)
formatter = logging.Formatter('%(asctime)s: %(message)s', "%m/%d %H:%M")
# 控制台处理器
console_handler = logging.StreamHandler()
if debug:
console_handler.setLevel(logging.DEBUG)
else:
console_handler.setLevel(logging.INFO)
console_handler.setFormatter(formatter)
# 文件处理器 - 无论是否debug都创建日志文件
logfile = os.path.join(self.dir_path, 'run.log')
file_handler = logging.FileHandler(logfile, mode='w')
file_handler.setLevel(logging.DEBUG)
file_handler.setFormatter(formatter)
# 添加处理器到logger
self.logger.addHandler(console_handler)
self.logger.addHandler(file_handler)
def set_log_dir(self):
# Initialize logger
if not os.path.isdir(self.dir_path) and not self.config['basic']['debug']:
os.makedirs(self.dir_path, exist_ok=True)
self.logger.info(f"Experiment log path in: {self.dir_path}")
def mae_torch(self, pred, true, mask_value=None):
if mask_value is not None:
mask = torch.gt(true, mask_value)
pred = torch.masked_select(pred, mask)
true = torch.masked_select(true, mask)
return torch.mean(torch.abs(true - pred))
def rmse_torch(self, pred, true, mask_value=None):
if mask_value is not None:
mask = torch.gt(true, mask_value)
pred = torch.masked_select(pred, mask)
true = torch.masked_select(true, mask)
return torch.sqrt(torch.mean((pred - true) ** 2))
def mape_torch(self, pred, true, mask_value=None):
if mask_value is not None:
mask = torch.gt(true, mask_value)
pred = torch.masked_select(pred, mask)
true = torch.masked_select(true, mask)
return torch.mean(torch.abs(torch.div((true - pred), (true + 0.001))))
def all_metrics(self, pred, true, mask1, mask2):
if mask1 == 'None': mask1 = None
if mask2 == 'None': mask2 = None
mae = self.mae_torch(pred, true, mask1)
rmse = self.rmse_torch(pred, true, mask1)
mape = self.mape_torch(pred, true, mask2)
return mae, rmse, mape

56
utils/loss_func.py Normal file
View File

@ -0,0 +1,56 @@
import torch
import torch.nn as nn
class MaskedMAELoss(nn.Module):
def __init__(self, scaler, mask_value):
super(MaskedMAELoss, self).__init__()
self.scaler = scaler
self.mask_value = mask_value
def forward(self, preds, labels):
if self.scaler:
preds = self.scaler.inverse_transform(preds)
labels = self.scaler.inverse_transform(labels)
return mae_torch(pred=preds, true=labels, mask_value=self.mask_value)
def masked_mae_loss(scaler, mask_value):
"""保持向后兼容性的函数"""
return MaskedMAELoss(scaler, mask_value)
def mae_torch(pred, true, mask_value=None):
if mask_value is not None:
mask = torch.gt(true, mask_value)
pred = torch.masked_select(pred, mask)
true = torch.masked_select(true, mask)
return torch.mean(torch.abs(true - pred))
def rmse_torch(pred, true, mask_value=None):
if mask_value is not None:
mask = torch.gt(true, mask_value)
pred = torch.masked_select(pred, mask)
true = torch.masked_select(true, mask)
return torch.sqrt(torch.mean((pred - true) ** 2))
def mape_torch(pred, true, mask_value=None):
if mask_value is not None:
mask = torch.gt(true, mask_value)
pred = torch.masked_select(pred, mask)
true = torch.masked_select(true, mask)
return torch.mean(torch.abs(torch.div((true - pred), (true + 0.001))))
def all_metrics(pred, true, mask1, mask2):
if mask1 == 'None': mask1 = None
if mask2 == 'None': mask2 = None
mae = mae_torch(pred, true, mask1)
rmse = rmse_torch(pred, true, mask1)
mape = mape_torch(pred, true, mask2)
return mae, rmse, mape
if __name__ == '__main__':
pred = torch.Tensor([1, 2, 3, 4])
true = torch.Tensor([2, 1, 4, 5])
print(all_metrics(pred, true, None, None))

93
utils/metrics.py Normal file
View File

@ -0,0 +1,93 @@
import numpy as np
from sklearn.metrics import mean_squared_error, mean_absolute_error
from typing import Dict, Union
def calculate_metrics(y_true: np.ndarray, y_pred: np.ndarray) -> Dict[str, float]:
"""
计算评估指标
Args:
y_true: 真实值
y_pred: 预测值
Returns:
包含各种指标的字典
"""
# 确保输入是numpy数组
y_true = np.array(y_true)
y_pred = np.array(y_pred)
# 计算各种指标
mse = mean_squared_error(y_true, y_pred)
rmse = np.sqrt(mse)
mae = mean_absolute_error(y_true, y_pred)
# 计算MAPE
mape = np.mean(np.abs((y_true - y_pred) / (y_true + 1e-8))) * 100
# 计算R²
ss_res = np.sum((y_true - y_pred) ** 2)
ss_tot = np.sum((y_true - np.mean(y_true)) ** 2)
r2 = 1 - (ss_res / (ss_tot + 1e-8))
# 计算SMAPE
smape = 2.0 * np.mean(np.abs(y_pred - y_true) / (np.abs(y_true) + np.abs(y_pred) + 1e-8)) * 100
metrics = {
'MSE': mse,
'RMSE': rmse,
'MAE': mae,
'MAPE': mape,
'R2': r2,
'SMAPE': smape
}
return metrics
def calculate_rolling_metrics(y_true: np.ndarray, y_pred: np.ndarray,
window: int = 10) -> Dict[str, np.ndarray]:
"""
计算滚动评估指标
Args:
y_true: 真实值
y_pred: 预测值
window: 滚动窗口大小
Returns:
包含滚动指标的字典
"""
y_true = np.array(y_true)
y_pred = np.array(y_pred)
n = len(y_true)
if n < window:
return {}
rolling_mse = []
rolling_mae = []
rolling_mape = []
for i in range(window, n + 1):
start_idx = i - window
end_idx = i
true_window = y_true[start_idx:end_idx]
pred_window = y_pred[start_idx:end_idx]
# 计算窗口内的指标
mse = mean_squared_error(true_window, pred_window)
mae = mean_absolute_error(true_window, pred_window)
mape = np.mean(np.abs((true_window - pred_window) / (true_window + 1e-8))) * 100
rolling_mse.append(mse)
rolling_mae.append(mae)
rolling_mape.append(mape)
return {
'rolling_MSE': np.array(rolling_mse),
'rolling_MAE': np.array(rolling_mae),
'rolling_MAPE': np.array(rolling_mape)
}

154
utils/normalizer.py Normal file
View File

@ -0,0 +1,154 @@
import numpy as np
import torch
class NScaler:
"""No normalization, returns the data as is."""
def transform(self, data):
return data
def inverse_transform(self, data):
return data
class StandardScaler:
"""Standardizes the input data by removing the mean and scaling to unit variance."""
def __init__(self, mean, std):
self.mean = mean
self.std = std
def transform(self, data):
return (data - self.mean) / self.std
def inverse_transform(self, data):
if isinstance(data, torch.Tensor) and isinstance(self.mean, np.ndarray):
self.std = torch.from_numpy(self.std).to(data.device).type(data.dtype)
self.mean = torch.from_numpy(self.mean).to(data.device).type(data.dtype)
return (data * self.std) + self.mean
class MinMax01Scaler:
"""Scales data to the range [0, 1]."""
def __init__(self, min, max):
self.min = min
self.max = max
def transform(self, data):
return (data - self.min) / (self.max - self.min)
def inverse_transform(self, data):
if isinstance(data, torch.Tensor) and isinstance(self.min, np.ndarray):
self.min = torch.from_numpy(self.min).to(data.device).type(data.dtype)
self.max = torch.from_numpy(self.max).to(data.device).type(data.dtype)
return (data * (self.max - self.min)) + self.min
class MinMax11Scaler:
"""Scales data to the range [-1, 1]."""
def __init__(self, min, max):
self.min = min
self.max = max
def transform(self, data):
return ((data - self.min) / (self.max - self.min)) * 2.0 - 1.0
def inverse_transform(self, data):
if isinstance(data, torch.Tensor) and isinstance(self.min, np.ndarray):
self.min = torch.from_numpy(self.min).to(data.device).type(data.dtype)
self.max = torch.from_numpy(self.max).to(data.device).type(data.dtype)
return ((data + 1.0) / 2.0) * (self.max - self.min) + self.min
class ColumnMinMaxScaler:
"""Scales data using column-specific min and max values."""
def __init__(self, min, max):
self.min = min
self.min_max = max - self.min
self.min_max[self.min_max == 0] = 1
def transform(self, data):
return (data - self.min) / self.min_max
def inverse_transform(self, data):
if isinstance(data, torch.Tensor) and isinstance(self.min, np.ndarray):
self.min_max = torch.from_numpy(self.min_max).to(data.device).type(torch.float32)
self.min = torch.from_numpy(self.min).to(data.device).type(torch.float32)
return (data * self.min_max) + self.min
def one_hot_by_column(data):
"""Applies one-hot encoding to each column of a 2D numpy array."""
len_data = data.shape[0]
encoded = []
for i in range(data.shape[1]):
column = data[:, i]
min_val = column.min()
zero_matrix = np.zeros((len_data, column.max() - min_val + 1))
zero_matrix[np.arange(len_data), column - min_val] = 1
encoded.append(zero_matrix)
return np.hstack(encoded)
def minmax_by_column(data):
"""Applies MinMax scaling to each column of a 2D numpy array."""
normalized = []
for i in range(data.shape[1]):
column = data[:, i]
min_val = column.min()
max_val = column.max()
column = (column - min_val) / (max_val - min_val)
normalized.append(column[:, np.newaxis])
return np.hstack(normalized)
def normalize_dataset(data, normalizer, column_wise=False):
if normalizer == 'max01':
if column_wise:
minimum = data.min(axis=0, keepdims=True)
maximum = data.max(axis=0, keepdims=True)
else:
minimum = data.min()
maximum = data.max()
scaler = MinMax01Scaler(minimum, maximum)
# data = scaler.transform(data)
# print('Normalize the dataset by MinMax01 Normalization')
elif normalizer == 'max11':
if column_wise:
minimum = data.min(axis=0, keepdims=True)
maximum = data.max(axis=0, keepdims=True)
else:
minimum = data.min()
maximum = data.max()
scaler = MinMax11Scaler(minimum, maximum)
# data = scaler.transform(data)
# print('Normalize the dataset by MinMax11 Normalization')
elif normalizer == 'std':
if column_wise:
mean = data.mean(axis=0, keepdims=True)
std = data.std(axis=0, keepdims=True)
else:
mean = data.mean()
std = data.std()
scaler = StandardScaler(mean, std)
# data = scaler.transform(data)
# print('Normalize the dataset by Standard Normalization')
elif normalizer == 'None':
scaler = NScaler()
# data = scaler.transform(data)
# print('Does not normalize the dataset')
elif normalizer == 'cmax':
scaler = ColumnMinMaxScaler(data.min(axis=0), data.max(axis=0))
# data = scaler.transform(data)
# print('Normalize the dataset by Column Min-Max Normalization')
else:
raise ValueError(f"Unsupported normalizer type: {normalizer}")
return scaler