添加requirements.txt依赖文件,更新README和utils/download.py,移除STDEN子模块
This commit is contained in:
parent
e9e3da03d3
commit
42e250d8e1
11
README.md
11
README.md
|
|
@ -4,6 +4,17 @@ Secret Projct
|
||||||
|
|
||||||
mkdir -p models/gpt2
|
mkdir -p models/gpt2
|
||||||
|
|
||||||
|
## Download dataset
|
||||||
|
python utils/download.py
|
||||||
|
|
||||||
|
## Download gpt weight
|
||||||
|
|
||||||
|
mkdir -p models/gpt2
|
||||||
|
|
||||||
Download config.json & pytorch_model.bin from https://huggingface.co/openai-community/gpt2/tree/main
|
Download config.json & pytorch_model.bin from https://huggingface.co/openai-community/gpt2/tree/main
|
||||||
|
|
||||||
Use pytorch >= 2.6 to load model.
|
Use pytorch >= 2.6 to load model.
|
||||||
|
|
||||||
|
## Run
|
||||||
|
|
||||||
|
Run: `python.py --config configs/STGODE_LLM_GPT2/PEMS08.yaml
|
||||||
1
STDEN
1
STDEN
|
|
@ -1 +0,0 @@
|
||||||
Subproject commit e50a1ba6d70528b3e684c85f316aed05bb5085f2
|
|
||||||
|
|
@ -0,0 +1,42 @@
|
||||||
|
# 核心深度学习框架
|
||||||
|
torch
|
||||||
|
torchvision
|
||||||
|
torchaudio
|
||||||
|
|
||||||
|
# 科学计算和数据处理
|
||||||
|
numpy
|
||||||
|
pandas
|
||||||
|
scipy
|
||||||
|
|
||||||
|
# 机器学习工具
|
||||||
|
scikit-learn
|
||||||
|
|
||||||
|
# 配置和文件处理
|
||||||
|
pyyaml
|
||||||
|
|
||||||
|
# 进度条
|
||||||
|
tqdm
|
||||||
|
|
||||||
|
# 图神经网络和距离计算
|
||||||
|
fastdtw
|
||||||
|
|
||||||
|
# 微分方程求解器
|
||||||
|
torchdiffeq
|
||||||
|
|
||||||
|
# 自然语言处理(用于GPT-2模型)
|
||||||
|
transformers
|
||||||
|
|
||||||
|
# 数据可视化
|
||||||
|
matplotlib
|
||||||
|
|
||||||
|
# 网络请求(用于数据下载)
|
||||||
|
requests
|
||||||
|
|
||||||
|
# 文件压缩处理
|
||||||
|
zipfile
|
||||||
|
|
||||||
|
# Kaggle数据下载
|
||||||
|
kagglehub
|
||||||
|
|
||||||
|
# 其他工具
|
||||||
|
future
|
||||||
|
|
@ -0,0 +1,146 @@
|
||||||
|
import os
|
||||||
|
import requests
|
||||||
|
import zipfile
|
||||||
|
import shutil
|
||||||
|
import kagglehub # 假设 kagglehub 是一个可用的库
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
# 定义文件完整性信息的字典
|
||||||
|
|
||||||
|
|
||||||
|
def check_and_download_data():
|
||||||
|
"""
|
||||||
|
检查 data 文件夹的完整性,并根据缺失文件类型下载相应数据。
|
||||||
|
"""
|
||||||
|
current_working_dir = os.getcwd() # 获取当前工作目录
|
||||||
|
data_dir = os.path.join(current_working_dir, "data") # 假设 data 文件夹在当前工作目录下
|
||||||
|
|
||||||
|
expected_structure = {
|
||||||
|
"PEMS03": ["PEMS03.csv", "PEMS03.npz", "PEMS03.txt", "PEMS03_dtw_distance.npy", "PEMS03_spatial_distance.npy"],
|
||||||
|
"PEMS04": ["PEMS04.csv", "PEMS04.npz", "PEMS04_dtw_distance.npy", "PEMS04_spatial_distance.npy"],
|
||||||
|
"PEMS07": ["PEMS07.csv", "PEMS07.npz", "PEMS07_dtw_distance.npy", "PEMS07_spatial_distance.npy"],
|
||||||
|
"PEMS08": ["PEMS08.csv", "PEMS08.npz", "PEMS08_dtw_distance.npy", "PEMS08_spatial_distance.npy"]
|
||||||
|
}
|
||||||
|
|
||||||
|
current_dir = os.getcwd() # 获取当前工作目录
|
||||||
|
missing_adj = False
|
||||||
|
missing_main_files = False
|
||||||
|
|
||||||
|
# 检查 data 文件夹是否存在
|
||||||
|
if not os.path.exists(data_dir) or not os.path.isdir(data_dir):
|
||||||
|
# print(f"目录 {data_dir} 不存在。")
|
||||||
|
print("正在下载所有必要的数据文件...")
|
||||||
|
missing_adj = True
|
||||||
|
missing_main_files = True
|
||||||
|
else:
|
||||||
|
# 检查根目录下的 get_adj.py 文件
|
||||||
|
if "get_adj.py" not in os.listdir(data_dir):
|
||||||
|
# print(f"根目录下缺少文件 get_adj.py。")
|
||||||
|
missing_adj = True
|
||||||
|
|
||||||
|
# 遍历预期的文件结构
|
||||||
|
for subfolder, expected_files in expected_structure.items():
|
||||||
|
subfolder_path = os.path.join(data_dir, subfolder)
|
||||||
|
|
||||||
|
# 检查子文件夹是否存在
|
||||||
|
if not os.path.exists(subfolder_path) or not os.path.isdir(subfolder_path):
|
||||||
|
# print(f"子文件夹 {subfolder} 不存在。")
|
||||||
|
missing_main_files = True
|
||||||
|
continue
|
||||||
|
|
||||||
|
# 获取子文件夹中的实际文件列表
|
||||||
|
actual_files = os.listdir(subfolder_path)
|
||||||
|
|
||||||
|
# 检查是否缺少文件
|
||||||
|
for expected_file in expected_files:
|
||||||
|
if expected_file not in actual_files:
|
||||||
|
# print(f"子文件夹 {subfolder} 中缺少文件 {expected_file}。")
|
||||||
|
if "_dtw_distance.npy" in expected_file or "_spatial_distance.npy" in expected_file:
|
||||||
|
missing_adj = True
|
||||||
|
else:
|
||||||
|
missing_main_files = True
|
||||||
|
|
||||||
|
# 根据缺失文件类型调用下载逻辑
|
||||||
|
if missing_adj:
|
||||||
|
download_adj_data(current_dir)
|
||||||
|
if missing_main_files:
|
||||||
|
download_kaggle_data(current_dir)
|
||||||
|
|
||||||
|
return True
|
||||||
|
|
||||||
|
|
||||||
|
def download_adj_data(current_dir, max_retries=3):
|
||||||
|
"""
|
||||||
|
下载并解压 adj.zip 文件,并显示下载进度条。
|
||||||
|
如果下载失败,最多重试 max_retries 次。
|
||||||
|
"""
|
||||||
|
url = "https://code.zhang-heng.com/static/adj.zip"
|
||||||
|
retries = 0
|
||||||
|
|
||||||
|
while retries <= max_retries:
|
||||||
|
try:
|
||||||
|
print(f"正在从 {url} 下载邻接矩阵文件...")
|
||||||
|
response = requests.get(url, stream=True)
|
||||||
|
|
||||||
|
if response.status_code == 200:
|
||||||
|
total_size = int(response.headers.get('content-length', 0))
|
||||||
|
block_size = 1024 # 1KB
|
||||||
|
t = tqdm(total=total_size, unit='B', unit_scale=True, desc="下载进度")
|
||||||
|
|
||||||
|
zip_file_path = os.path.join(current_dir, "adj.zip")
|
||||||
|
with open(zip_file_path, 'wb') as f:
|
||||||
|
for data in response.iter_content(block_size):
|
||||||
|
f.write(data)
|
||||||
|
t.update(len(data))
|
||||||
|
t.close()
|
||||||
|
|
||||||
|
# print("下载完成,文件已保存到:", zip_file_path)
|
||||||
|
|
||||||
|
if os.path.exists(zip_file_path):
|
||||||
|
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
|
||||||
|
zip_ref.extractall(current_dir)
|
||||||
|
# print("数据集已解压到:", current_dir)
|
||||||
|
os.remove(zip_file_path) # 删除zip文件
|
||||||
|
else:
|
||||||
|
print("未找到下载的zip文件,跳过解压。")
|
||||||
|
break # 下载成功,退出循环
|
||||||
|
else:
|
||||||
|
print(f"下载失败,状态码: {response.status_code}。请检查链接是否有效。")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"下载或解压数据集时出错: {e}")
|
||||||
|
print("如果链接无效,请检查URL的合法性或稍后重试。")
|
||||||
|
|
||||||
|
retries += 1
|
||||||
|
if retries > max_retries:
|
||||||
|
raise Exception(f"下载失败,已达到最大重试次数({max_retries}次)。请检查链接或网络连接。")
|
||||||
|
|
||||||
|
|
||||||
|
def download_kaggle_data(current_dir):
|
||||||
|
"""
|
||||||
|
下载 KaggleHub 数据集,并将 data 文件夹合并到当前工作目录。
|
||||||
|
如果目标文件夹已存在,会覆盖冲突的文件。
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
print("正在下载 PEMS 数据集...")
|
||||||
|
path = kagglehub.dataset_download("elmahy/pems-dataset")
|
||||||
|
# print("Path to KaggleHub dataset files:", path)
|
||||||
|
|
||||||
|
if os.path.exists(path):
|
||||||
|
data_folder_path = os.path.join(path, "data")
|
||||||
|
if os.path.exists(data_folder_path):
|
||||||
|
destination_path = os.path.join(current_dir, "data")
|
||||||
|
|
||||||
|
# 使用 shutil.copytree 合并文件夹,覆盖冲突的文件
|
||||||
|
shutil.copytree(data_folder_path, destination_path, dirs_exist_ok=True)
|
||||||
|
# print(f"data 文件夹已合并到: {destination_path}")
|
||||||
|
# else:
|
||||||
|
# print("未找到 data 文件夹,跳过合并操作。")
|
||||||
|
# else:
|
||||||
|
# print("未找到 KaggleHub 数据集路径,跳过处理。")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"下载或处理 KaggleHub 数据集时出错: {e}")
|
||||||
|
|
||||||
|
|
||||||
|
# 主程序
|
||||||
|
if __name__ == "__main__":
|
||||||
|
check_and_download_data()
|
||||||
Loading…
Reference in New Issue