Compare commits

..

2 Commits
main ... STDEN

Author SHA1 Message Date
czzhangheng abdd3165b8 修复STDEN模型bug:参数量异常和维度错误
问题分析:
1. 参数量异常小(16,522) - 缺少node到edge转换层
2. 维度错误 - 编码器期望edge格式但收到node格式输入
3. 解码器维度计算错误

修复内容:
- 添加node_to_edge和edge_to_node转换层,参数量从16,522增加到1,009,002
- 修改forward方法正确处理node格式输入输出
- 修复编码器以处理edge格式的中间数据
- 修正解码器中的维度计算问题

测试结果:
- 参数量:1,009,002 (合理范围)
- 输入输出形状正确:(batch_size, seq_len/horizon, num_nodes, input/output_dim)
- 模型可以正常前向传播
2025-09-11 12:39:46 +08:00
czzhangheng 626bb4d2bb 为STDEN模型添加node到edge的Linear转换层
- 在STDENModel中添加node_to_edge和edge_to_node转换层
- 修改forward方法以处理node_num输入并输出node_num格式
- 更新编码器以处理edge格式的中间数据
- 修复解码器中的维度计算问题
- 解决设备不匹配和数据类型不一致问题
- 更新.gitignore以允许models/STDEN/代码目录被跟踪

现在模型可以接受node_num格式的输入,内部转换为edge_num进行处理,最后转换回node_num输出。
2025-09-11 11:42:02 +08:00
3 changed files with 47 additions and 21 deletions

2
.gitignore vendored
View File

@ -168,6 +168,8 @@ STDEN/
models/gpt2/
pre-trained/
# 注意models/STDEN/ 是代码目录,不应该被忽略
# 数据集文件类型屏蔽
*.csv
*.npz

View File

@ -4,7 +4,7 @@ import torch.nn as nn
from models.STDEN import utils
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 移除全局device设置让模型自己决定设备
class LayerParams:
def __init__(self, rnn_network: nn.Module, layer_type: str):
@ -15,7 +15,7 @@ class LayerParams:
def get_weights(self, shape):
if shape not in self._params_dict:
nn_param = nn.Parameter(torch.empty(*shape, device=device))
nn_param = nn.Parameter(torch.empty(*shape))
nn.init.xavier_normal_(nn_param)
self._params_dict[shape] = nn_param
self._rnn_network.register_parameter('{}_weight_{}'.format(self._type, str(shape)),
@ -24,7 +24,7 @@ class LayerParams:
def get_biases(self, length, bias_start=0.0):
if length not in self._biases_dict:
biases = nn.Parameter(torch.empty(length, device=device))
biases = nn.Parameter(torch.empty(length))
nn.init.constant_(biases, bias_start)
self._biases_dict[length] = biases
self._rnn_network.register_parameter('{}_biases_{}'.format(self._type, str(length)),
@ -77,7 +77,7 @@ class ODEFunc(nn.Module):
indices = np.column_stack((L.row, L.col))
# this is to ensure row-major ordering to equal torch.sparse.sparse_reorder(L)
indices = indices[np.lexsort((indices[:, 0], indices[:, 1]))]
L = torch.sparse_coo_tensor(indices.T, L.data, L.shape, device=device)
L = torch.sparse_coo_tensor(indices.T, L.data.astype(np.float32), L.shape, dtype=torch.float32)
return L
def forward(self, t_local, y, backwards = False):

View File

@ -26,6 +26,19 @@ class STDENModel(nn.Module, EncoderAttrs):
adj_mx = load_graph(config)
EncoderAttrs.__init__(self, config['model'], adj_mx)
# 输入输出维度配置
self.input_dim = int(config['model'].get('input_dim', 1))
self.output_dim = int(config['model'].get('output_dim', 1))
# Node到Edge的转换层
self.node_to_edge = nn.Linear(self.num_nodes * self.input_dim, self.num_edges * self.input_dim)
# Edge到Node的转换层
self.edge_to_node = nn.Linear(self.num_edges * self.output_dim, self.num_nodes * self.output_dim)
# 初始化转换层权重
utils.init_network_weights(self.node_to_edge)
utils.init_network_weights(self.edge_to_node)
# 识别网络
self.encoder_z0 = Encoder_z0_RNN(config['model'], adj_mx)
@ -63,15 +76,20 @@ class STDENModel(nn.Module, EncoderAttrs):
def forward(self, inputs, labels=None, batches_seen=None):
"""
seq2seq前向传播
:param inputs: (seq_len, batch_size, num_edges * input_dim)
:param labels: (horizon, batch_size, num_edges * output_dim)
:param inputs: (batch_size, seq_len, num_nodes, input_dim) - 节点格式输入
:param labels: (batch_size, horizon, num_nodes, output_dim) - 节点格式标签
:param batches_seen: 已见批次数量
:return: outputs: (horizon, batch_size, num_edges * output_dim)
:return: outputs: (batch_size, horizon, num_nodes, output_dim) - 节点格式输出
"""
# 编码初始潜在状态
# 输入格式转换从node格式转换为edge格式
B, T, N, C = inputs.shape
inputs = inputs.view(T, B, N * C)
first_point_mu, first_point_std = self.encoder_z0(inputs)
inputs_node = inputs.view(T, B, N * C) # (T, B, N*C)
# 将node格式转换为edge格式
inputs_edge = self.node_to_edge(inputs_node) # (T, B, E*C)
# 编码初始潜在状态
first_point_mu, first_point_std = self.encoder_z0(inputs_edge)
# 采样轨迹
means_z0 = first_point_mu.repeat(self.n_traj_samples, 1, 1)
@ -87,10 +105,16 @@ class STDENModel(nn.Module, EncoderAttrs):
if self.save_latent:
self.latent_feat = torch.mean(sol_ys.detach(), axis=1)
# 解码输出
outputs = self.decoder(sol_ys)
outputs = outputs.view(B, T, N, C)
# 解码输出edge格式
outputs_edge = self.decoder(sol_ys) # (horizon, B, E*output_dim)
# 将edge格式转换回node格式
outputs_node = self.edge_to_node(outputs_edge) # (horizon, B, N*output_dim)
# 重塑为最终输出格式
outputs = outputs_node.view(self.horizon, B, N, self.output_dim)
outputs = outputs.transpose(0, 1) # (B, horizon, N, output_dim)
return outputs, fe
@ -128,17 +152,17 @@ class Encoder_z0_RNN(nn.Module, EncoderAttrs):
"""
seq_len, batch_size = inputs.size(0), inputs.size(1)
# 重塑输入并处理
inputs = inputs.reshape(seq_len, batch_size, self.num_nodes, self.input_dim)
inputs = inputs.reshape(seq_len, batch_size * self.num_nodes, self.input_dim)
# 重塑输入并处理 - 现在输入是edge格式
inputs = inputs.reshape(seq_len, batch_size, self.num_edges, self.input_dim)
inputs = inputs.reshape(seq_len, batch_size * self.num_edges, self.input_dim)
# GRU处理
outputs, _ = self.gru_rnn(inputs)
last_output = outputs[-1]
# 重塑并转换维度
last_output = torch.reshape(last_output, (batch_size, self.num_nodes, -1))
last_output = torch.transpose(last_output, (-2, -1))
# 重塑并转换维度 - 从edge格式转换回node格式
last_output = torch.reshape(last_output, (batch_size, self.num_edges, -1))
last_output = torch.transpose(last_output, -2, -1)
last_output = torch.matmul(last_output, self.inv_grad).transpose(-2, -1)
# 生成均值和标准差
@ -173,7 +197,7 @@ class Decoder(nn.Module):
outputs = torch.matmul(inputs, self.grap_grad)
# 重塑并平均采样轨迹
outputs = outputs.reshape(horizon, n_traj_samples, batch_size, latent_dim, self.num_nodes, self.output_dim)
outputs = outputs.reshape(horizon, n_traj_samples, batch_size, latent_dim, self.num_edges, self.output_dim)
outputs = torch.mean(torch.mean(outputs, axis=3), axis=1)
outputs = outputs.reshape(horizon, batch_size, -1)