import math import os import time import copy import pandas as pd import numpy as np from tqdm import tqdm import torch class Trainer: def __init__(self, config, model, loss, optimizer, train_loader, val_loader, test_loader, scalers, logger, lr_scheduler=None): self.model = model self.loss = loss self.optimizer = optimizer self.train_loader = train_loader self.val_loader = val_loader self.test_loader = test_loader self.scalers = scalers # 现在是多个标准化器的列表 self.args = config['train'] self.logger = logger self.args['device'] = config['basic']['device'] self.lr_scheduler = lr_scheduler self.train_per_epoch = len(train_loader) self.val_per_epoch = len(val_loader) if val_loader else 0 self.best_path = os.path.join(logger.dir_path, 'best_model.pth') self.best_test_path = os.path.join(logger.dir_path, 'best_test_model.pth') self.loss_figure_path = os.path.join(logger.dir_path, 'loss.png') # 用于收集nfe数据 self.c = [] self.res, self.keys = [], [] def _run_epoch(self, epoch, dataloader, mode): if mode == 'train': self.model.train() optimizer_step = True else: self.model.eval() optimizer_step = False total_loss = 0 epoch_time = time.time() # 清空nfe数据收集 if mode == 'train': self.c.clear() with torch.set_grad_enabled(optimizer_step): with tqdm(total=len(dataloader), desc=f'{mode.capitalize()} Epoch {epoch}') as pbar: for batch_idx, (data, target) in enumerate(dataloader): label = target[..., :self.args['output_dim']] output, fe = self.model(data) if self.args['real_value']: # 只对输出维度进行反归一化 output = self._inverse_transform_output(output) loss = self.loss(output, label) # 收集nfe数据(仅在训练模式下) if mode == 'train': self.c.append([*fe, loss.item()]) # 记录FE信息 self.logger.logger.debug("FE: number - {}, time - {:.3f} s, err - {:.3f}".format(*fe, loss.item())) if optimizer_step and self.optimizer is not None: self.optimizer.zero_grad() loss.backward() if self.args['grad_norm']: torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args['max_grad_norm']) self.optimizer.step() total_loss += loss.item() if mode == 'train' and (batch_idx + 1) % self.args['log_step'] == 0: self.logger.info( f'Train Epoch {epoch}: {batch_idx + 1}/{len(dataloader)} Loss: {loss.item():.6f}') # 更新 tqdm 的进度 pbar.update(1) pbar.set_postfix(loss=loss.item()) avg_loss = total_loss / len(dataloader) self.logger.logger.info( f'{mode.capitalize()} Epoch {epoch}: average Loss: {avg_loss:.6f}, time: {time.time() - epoch_time:.2f} s') # 收集nfe数据(仅在训练模式下) if mode == 'train': self.res.append(pd.DataFrame(self.c, columns=['nfe', 'time', 'err'])) self.keys.append(epoch) return avg_loss def _inverse_transform_output(self, output): """ 只对输出维度进行反归一化 假设输出数据形状为 [batch, horizon, nodes, features] 只对前output_dim个特征进行反归一化 """ if not self.args['real_value']: return output # 获取输出维度的数量 output_dim = self.args['output_dim'] # 如果输出特征数小于等于标准化器数量,直接使用对应的标准化器 if output_dim <= len(self.scalers): # 对每个输出特征分别进行反归一化 for feature_idx in range(output_dim): if feature_idx < len(self.scalers): output[..., feature_idx:feature_idx+1] = self.scalers[feature_idx].inverse_transform( output[..., feature_idx:feature_idx+1] ) else: # 如果输出特征数大于标准化器数量,只对前len(scalers)个特征进行反归一化 for feature_idx in range(len(self.scalers)): output[..., feature_idx:feature_idx+1] = self.scalers[feature_idx].inverse_transform( output[..., feature_idx:feature_idx+1] ) return output def train_epoch(self, epoch): return self._run_epoch(epoch, self.train_loader, 'train') def val_epoch(self, epoch): return self._run_epoch(epoch, self.val_loader or self.test_loader, 'val') def test_epoch(self, epoch): return self._run_epoch(epoch, self.test_loader, 'test') def train(self): best_model, best_test_model = None, None best_loss, best_test_loss = float('inf'), float('inf') not_improved_count = 0 self.logger.logger.info("Training process started") for epoch in range(1, self.args['epochs'] + 1): train_epoch_loss = self.train_epoch(epoch) val_epoch_loss = self.val_epoch(epoch) test_epoch_loss = self.test_epoch(epoch) if train_epoch_loss > 1e6: self.logger.logger.warning('Gradient explosion detected. Ending...') break if val_epoch_loss < best_loss: best_loss = val_epoch_loss not_improved_count = 0 best_model = copy.deepcopy(self.model.state_dict()) torch.save(best_model, self.best_path) self.logger.logger.info('Best validation model saved!') else: not_improved_count += 1 if self.args['early_stop'] and not_improved_count == self.args['early_stop_patience']: self.logger.logger.info( f"Validation performance didn't improve for {self.args['early_stop_patience']} epochs. Training stops.") break if test_epoch_loss < best_test_loss: best_test_loss = test_epoch_loss best_test_model = copy.deepcopy(self.model.state_dict()) torch.save(best_test_model, self.best_test_path) # 保存nfe数据(如果启用) if hasattr(self.args, 'nfe') and bool(self.args.get('nfe', False)): self._save_nfe_data() if not self.args['debug']: torch.save(best_model, self.best_path) torch.save(best_test_model, self.best_test_path) self.logger.logger.info(f"Best models saved at {self.best_path} and {self.best_test_path}") self._finalize_training(best_model, best_test_model) def _finalize_training(self, best_model, best_test_model): self.model.load_state_dict(best_model) self.logger.logger.info("Testing on best validation model") self.test(self.model, self.args, self.test_loader, self.scalers, self.logger, generate_viz=False) self.model.load_state_dict(best_test_model) self.logger.logger.info("Testing on best test model") self.test(self.model, self.args, self.test_loader, self.scalers, self.logger, generate_viz=True) @staticmethod def test(model, args, data_loader, scalers, logger, path=None, generate_viz=True): if path: checkpoint = torch.load(path) model.load_state_dict(checkpoint['state_dict']) model.to(args['device']) model.eval() y_pred, y_true = [], [] # 用于收集nfe数据 c = [] with torch.no_grad(): for data, target in data_loader: label = target[..., :args['output_dim']] output, fe = model(data) y_pred.append(output) y_true.append(label) # 收集nfe数据 c.append([*fe, 0.0]) # 测试时没有loss,设为0 if args['real_value']: # 只对输出维度进行反归一化 y_pred = Trainer._inverse_transform_output_static(torch.cat(y_pred, dim=0), args, scalers) else: y_pred = torch.cat(y_pred, dim=0) y_true = torch.cat(y_true, dim=0) # 计算每个时间步的指标 for t in range(y_true.shape[1]): mae, rmse, mape = logger.all_metrics(y_pred[:, t, ...], y_true[:, t, ...], args['mae_thresh'], args['mape_thresh']) logger.logger.info(f"Horizon {t + 1:02d}, MAE: {mae:.4f}, RMSE: {rmse:.4f}, MAPE: {mape:.4f}") mae, rmse, mape = logger.all_metrics(y_pred, y_true, args['mae_thresh'], args['mape_thresh']) logger.logger.info(f"Average Horizon, MAE: {mae:.4f}, RMSE: {rmse:.4f}, MAPE: {mape:.4f}") # 保存nfe数据(如果启用) if hasattr(args, 'nfe') and bool(args.get('nfe', False)): Trainer._save_nfe_data_static(c, model, logger) # 只在需要时生成可视化图片 if generate_viz: save_dir = logger.dir_path if hasattr(logger, 'dir_path') else './logs' Trainer._generate_node_visualizations(y_pred, y_true, logger, save_dir) Trainer._generate_input_output_comparison(y_pred, y_true, data_loader, logger, save_dir, target_node=1, num_samples=10, scalers=scalers) @staticmethod def _inverse_transform_output_static(output, args, scalers): """ 静态方法:只对输出维度进行反归一化 """ if not args['real_value']: return output # 获取输出维度的数量 output_dim = args['output_dim'] # 如果输出特征数小于等于标准化器数量,直接使用对应的标准化器 if output_dim <= len(scalers): # 对每个输出特征分别进行反归一化 for feature_idx in range(output_dim): if feature_idx < len(scalers): output[..., feature_idx:feature_idx+1] = scalers[feature_idx].inverse_transform( output[..., feature_idx:feature_idx+1] ) else: # 如果输出特征数大于标准化器数量,只对前len(scalers)个特征进行反归一化 for feature_idx in range(len(scalers)): output[..., feature_idx:feature_idx+1] = scalers[feature_idx].inverse_transform( output[..., feature_idx:feature_idx+1] ) return output @staticmethod def _generate_node_visualizations(y_pred, y_true, logger, save_dir): """ 生成节点预测可视化图片 Args: y_pred: 预测值 y_true: 真实值 logger: 日志记录器 save_dir: 保存目录 """ import matplotlib.pyplot as plt import numpy as np import os import matplotlib from tqdm import tqdm # 设置matplotlib配置,减少字体查找输出 matplotlib.set_loglevel('error') # 只显示错误信息 plt.rcParams['font.family'] = 'DejaVu Sans' # 使用默认字体 # 检查数据有效性 if y_pred is None or y_true is None: return # 创建pic文件夹 pic_dir = os.path.join(save_dir, 'pic') os.makedirs(pic_dir, exist_ok=True) # 固定生成10张图片 num_nodes_to_plot = 10 # 生成单个节点的详细图 with tqdm(total=num_nodes_to_plot, desc="Generating node visualizations") as pbar: for node_id in range(num_nodes_to_plot): # 获取对应节点的数据 if len(y_pred.shape) > 2 and y_pred.shape[-2] > node_id: # 数据格式: [time_step, seq_len, num_node, dim] node_pred = y_pred[:, 12, node_id, 0].cpu().numpy() # t=1时刻,指定节点,第一个特征 node_true = y_true[:, 12, node_id, 0].cpu().numpy() else: # 如果数据不足10个节点,只处理实际存在的节点 if node_id >= y_pred.shape[-2]: pbar.update(1) continue else: node_pred = y_pred[:, 0, node_id, 0].cpu().numpy() node_true = y_true[:, 0, node_id, 0].cpu().numpy() # 检查数据有效性 if np.isnan(node_pred).any() or np.isnan(node_true).any(): pbar.update(1) continue # 取前500个时间步 max_steps = min(500, len(node_pred)) if max_steps <= 0: pbar.update(1) continue node_pred_500 = node_pred[:max_steps] node_true_500 = node_true[:max_steps] # 创建时间轴 time_steps = np.arange(max_steps) # 绘制对比图 plt.figure(figsize=(12, 6)) plt.plot(time_steps, node_true_500, 'b-', label='True Values', linewidth=2, alpha=0.8) plt.plot(time_steps, node_pred_500, 'r-', label='Predictions', linewidth=2, alpha=0.8) plt.xlabel('Time Steps') plt.ylabel('Values') plt.title(f'Node {node_id + 1}: True vs Predicted Values (First {max_steps} Time Steps)') plt.legend() plt.grid(True, alpha=0.3) # 保存图片,使用不同的命名 save_path = os.path.join(pic_dir, f'node{node_id + 1:02d}_prediction_first500.png') plt.savefig(save_path, dpi=300, bbox_inches='tight') plt.close() pbar.update(1) # 生成所有节点的对比图(前100个时间步,便于观察) # 选择前100个时间步 plot_steps = min(100, y_pred.shape[0]) if plot_steps <= 0: return # 创建子图 fig, axes = plt.subplots(2, 5, figsize=(20, 8)) axes = axes.flatten() for node_id in range(num_nodes_to_plot): if len(y_pred.shape) > 2 and y_pred.shape[-2] > node_id: # 数据格式: [time_step, seq_len, num_node, dim] node_pred = y_pred[:plot_steps, 0, node_id, 0].cpu().numpy() node_true = y_true[:plot_steps, 0, node_id, 0].cpu().numpy() else: # 如果数据不足10个节点,只处理实际存在的节点 if node_id >= y_pred.shape[-2]: axes[node_id].text(0.5, 0.5, f'Node {node_id + 1}\nNo Data', ha='center', va='center', transform=axes[node_id].transAxes) continue else: node_pred = y_pred[:plot_steps, 0, node_id, 0].cpu().numpy() node_true = y_true[:plot_steps, 0, node_id, 0].cpu().numpy() # 检查数据有效性 if np.isnan(node_pred).any() or np.isnan(node_true).any(): axes[node_id].text(0.5, 0.5, f'Node {node_id + 1}\nNo Data', ha='center', va='center', transform=axes[node_id].transAxes) continue time_steps = np.arange(plot_steps) axes[node_id].plot(time_steps, node_true, 'b-', label='True', linewidth=1.5, alpha=0.8) axes[node_id].plot(time_steps, node_pred, 'r-', label='Pred', linewidth=1.5, alpha=0.8) axes[node_id].set_title(f'Node {node_id + 1}') axes[node_id].grid(True, alpha=0.3) axes[node_id].legend(fontsize=8) if node_id >= 5: # 下面一行添加x轴标签 axes[node_id].set_xlabel('Time Steps') if node_id % 5 == 0: # 左边一列添加y轴标签 axes[node_id].set_ylabel('Values') plt.tight_layout() summary_path = os.path.join(pic_dir, 'all_nodes_summary.png') plt.savefig(summary_path, dpi=300, bbox_inches='tight') plt.close() @staticmethod def _generate_input_output_comparison(y_pred, y_true, data_loader, logger, save_dir, target_node=1, num_samples=10, scalers=None): """ 生成输入-输出样本比较图 Args: y_pred: 预测值 y_true: 真实值 data_loader: 数据加载器,用于获取输入数据 logger: 日志记录器 save_dir: 保存目录 target_node: 目标节点ID(从1开始) num_samples: 要比较的样本数量 scalers: 标准化器列表,用于反归一化输入数据 """ import matplotlib.pyplot as plt import numpy as np import os import matplotlib from tqdm import tqdm # 设置matplotlib配置 matplotlib.set_loglevel('error') plt.rcParams['font.family'] = 'DejaVu Sans' # 创建compare文件夹 compare_dir = os.path.join(save_dir, 'pic', 'compare') os.makedirs(compare_dir, exist_ok=True) # 获取输入数据 input_data = [] for batch_idx, (data, target) in enumerate(data_loader): if batch_idx >= num_samples: break input_data.append(data.cpu().numpy()) if not input_data: return # 获取目标节点的索引(从0开始) node_idx = target_node - 1 # 检查节点索引是否有效 if node_idx >= y_pred.shape[-2]: return # 为每个样本生成比较图 with tqdm(total=min(num_samples, len(input_data)), desc="Generating input-output comparisons") as pbar: for sample_idx in range(min(num_samples, len(input_data))): # 获取输入序列(假设输入形状为 [batch, seq_len, nodes, features]) input_seq = input_data[sample_idx][0, :, node_idx, 0] # 第一个batch,所有时间步,目标节点,第一个特征 # 对输入数据进行反归一化 if scalers is not None and len(scalers) > 0: # 使用第一个标准化器对输入进行反归一化(假设输入特征使用第一个标准化器) input_seq = scalers[0].inverse_transform(input_seq.reshape(-1, 1)).flatten() # 获取对应的预测值和真实值 pred_seq = y_pred[sample_idx, :, node_idx, 0].cpu().numpy() # 所有horizon,目标节点,第一个特征 true_seq = y_true[sample_idx, :, node_idx, 0].cpu().numpy() # 检查数据有效性 if (np.isnan(input_seq).any() or np.isnan(pred_seq).any() or np.isnan(true_seq).any()): pbar.update(1) continue # 创建时间轴 - 输入和输出连续 total_time = np.arange(len(input_seq) + len(pred_seq)) # 创建合并的图形 - 输入和输出在同一个图中 plt.figure(figsize=(14, 8)) # 绘制完整的真实值曲线(输入 + 真实输出) true_combined = np.concatenate([input_seq, true_seq]) plt.plot(total_time, true_combined, 'b', label='True Values (Input + Output)', linewidth=2.5, alpha=0.9, linestyle='-') # 绘制预测值曲线(只绘制输出部分) output_time = np.arange(len(input_seq), len(input_seq) + len(pred_seq)) plt.plot(output_time, pred_seq, 'r', label='Predicted Values', linewidth=2, alpha=0.8, linestyle='-') # 添加垂直线分隔输入和输出 plt.axvline(x=len(input_seq)-0.5, color='gray', linestyle=':', alpha=0.7, label='Input/Output Boundary') # 设置图形属性 plt.xlabel('Time Steps') plt.ylabel('Values') plt.title(f'Sample {sample_idx + 1}: Input-Output Comparison (Node {target_node})') plt.legend() plt.grid(True, alpha=0.3) # 调整布局 plt.tight_layout() # 保存图片 save_path = os.path.join(compare_dir, f'sample{sample_idx + 1:02d}_node{target_node:02d}_comparison.png') plt.savefig(save_path, dpi=300, bbox_inches='tight') plt.close() pbar.update(1) # 生成汇总图(所有样本的预测值对比) fig, axes = plt.subplots(2, 5, figsize=(20, 8)) axes = axes.flatten() for sample_idx in range(min(num_samples, len(input_data))): if sample_idx >= 10: # 最多显示10个子图 break ax = axes[sample_idx] # 获取输入序列和预测值、真实值 input_seq = input_data[sample_idx][0, :, node_idx, 0] if scalers is not None and len(scalers) > 0: input_seq = scalers[0].inverse_transform(input_seq.reshape(-1, 1)).flatten() pred_seq = y_pred[sample_idx, :, node_idx, 0].cpu().numpy() true_seq = y_true[sample_idx, :, node_idx, 0].cpu().numpy() # 检查数据有效性 if np.isnan(input_seq).any() or np.isnan(pred_seq).any() or np.isnan(true_seq).any(): ax.text(0.5, 0.5, f'Sample {sample_idx + 1}\nNo Data', ha='center', va='center', transform=ax.transAxes) continue # 绘制对比图 - 输入和输出连续显示 total_time = np.arange(len(input_seq) + len(pred_seq)) true_combined = np.concatenate([input_seq, true_seq]) output_time = np.arange(len(input_seq), len(input_seq) + len(pred_seq)) ax.plot(total_time, true_combined, 'b', label='True', linewidth=2, alpha=0.9, linestyle='-') ax.plot(output_time, pred_seq, 'r', label='Pred', linewidth=1.5, alpha=0.8, linestyle='-') ax.axvline(x=len(input_seq)-0.5, color='gray', linestyle=':', alpha=0.5) ax.set_title(f'Sample {sample_idx + 1}') ax.grid(True, alpha=0.3) ax.legend(fontsize=8) if sample_idx >= 5: # 下面一行添加x轴标签 ax.set_xlabel('Time Steps') if sample_idx % 5 == 0: # 左边一列添加y轴标签 ax.set_ylabel('Values') # 隐藏多余的子图 for i in range(min(num_samples, len(input_data)), 10): axes[i].set_visible(False) plt.tight_layout() summary_path = os.path.join(compare_dir, f'all_samples_node{target_node:02d}_summary.png') plt.savefig(summary_path, dpi=300, bbox_inches='tight') plt.close() def _save_nfe_data(self): """保存nfe数据到文件""" if not self.res: return res = pd.concat(self.res, keys=self.keys) res.index.names = ['epoch', 'iter'] # 获取模型配置参数 filter_type = getattr(self.model, 'filter_type', 'unknown') atol = getattr(self.model, 'atol', 1e-5) rtol = getattr(self.model, 'rtol', 1e-5) # 保存nfe数据 nfe_file = os.path.join( self.logger.dir_path, 'nfe_{}_a{}_r{}.pkl'.format(filter_type, int(atol*1e5), int(rtol*1e5))) res.to_pickle(nfe_file) self.logger.logger.info(f"NFE data saved to {nfe_file}") @staticmethod def _compute_sampling_threshold(global_step, k): return k / (k + math.exp(global_step / k))