import torch import torch.nn as nn class MaskedMAELoss(nn.Module): def __init__(self, scaler, mask_value): super(MaskedMAELoss, self).__init__() self.scaler = scaler self.mask_value = mask_value def forward(self, preds, labels): if self.scaler: preds = self.scaler.inverse_transform(preds) labels = self.scaler.inverse_transform(labels) return mae_torch(pred=preds, true=labels, mask_value=self.mask_value) def masked_mae_loss(scaler, mask_value): """保持向后兼容性的函数""" return MaskedMAELoss(scaler, mask_value) def mae_torch(pred, true, mask_value=None): if mask_value is not None: mask = torch.gt(true, mask_value) pred = torch.masked_select(pred, mask) true = torch.masked_select(true, mask) return torch.mean(torch.abs(true - pred)) def rmse_torch(pred, true, mask_value=None): if mask_value is not None: mask = torch.gt(true, mask_value) pred = torch.masked_select(pred, mask) true = torch.masked_select(true, mask) return torch.sqrt(torch.mean((pred - true) ** 2)) def mape_torch(pred, true, mask_value=None): if mask_value is not None: mask = torch.gt(true, mask_value) pred = torch.masked_select(pred, mask) true = torch.masked_select(true, mask) return torch.mean(torch.abs(torch.div((true - pred), (true + 0.001)))) def all_metrics(pred, true, mask1, mask2): if mask1 == 'None': mask1 = None if mask2 == 'None': mask2 = None mae = mae_torch(pred, true, mask1) rmse = rmse_torch(pred, true, mask1) mape = mape_torch(pred, true, mask2) return mae, rmse, mape if __name__ == '__main__': pred = torch.Tensor([1, 2, 3, 4]) true = torch.Tensor([2, 1, 4, 5]) print(all_metrics(pred, true, None, None))