Project-I/utils/loss_func.py

56 lines
1.8 KiB
Python

import torch
import torch.nn as nn
class MaskedMAELoss(nn.Module):
def __init__(self, scaler, mask_value):
super(MaskedMAELoss, self).__init__()
self.scaler = scaler
self.mask_value = mask_value
def forward(self, preds, labels):
if self.scaler:
preds = self.scaler.inverse_transform(preds)
labels = self.scaler.inverse_transform(labels)
return mae_torch(pred=preds, true=labels, mask_value=self.mask_value)
def masked_mae_loss(scaler, mask_value):
"""保持向后兼容性的函数"""
return MaskedMAELoss(scaler, mask_value)
def mae_torch(pred, true, mask_value=None):
if mask_value is not None:
mask = torch.gt(true, mask_value)
pred = torch.masked_select(pred, mask)
true = torch.masked_select(true, mask)
return torch.mean(torch.abs(true - pred))
def rmse_torch(pred, true, mask_value=None):
if mask_value is not None:
mask = torch.gt(true, mask_value)
pred = torch.masked_select(pred, mask)
true = torch.masked_select(true, mask)
return torch.sqrt(torch.mean((pred - true) ** 2))
def mape_torch(pred, true, mask_value=None):
if mask_value is not None:
mask = torch.gt(true, mask_value)
pred = torch.masked_select(pred, mask)
true = torch.masked_select(true, mask)
return torch.mean(torch.abs(torch.div((true - pred), (true + 0.001))))
def all_metrics(pred, true, mask1, mask2):
if mask1 == 'None': mask1 = None
if mask2 == 'None': mask2 = None
mae = mae_torch(pred, true, mask1)
rmse = rmse_torch(pred, true, mask1)
mape = mape_torch(pred, true, mask2)
return mae, rmse, mape
if __name__ == '__main__':
pred = torch.Tensor([1, 2, 3, 4])
true = torch.Tensor([2, 1, 4, 5])
print(all_metrics(pred, true, None, None))