182 lines
6.8 KiB
Python
182 lines
6.8 KiB
Python
import torch
|
||
import torch.nn as nn
|
||
from torch.nn.modules.rnn import GRU
|
||
from models.STDEN.ode_func import ODEFunc
|
||
from models.STDEN.diffeq_solver import DiffeqSolver
|
||
from models.STDEN import utils
|
||
from data.graph_loader import load_graph
|
||
|
||
class EncoderAttrs:
|
||
"""编码器属性配置类"""
|
||
def __init__(self, config, adj_mx):
|
||
self.adj_mx = adj_mx
|
||
self.num_nodes = adj_mx.shape[0]
|
||
self.num_edges = (adj_mx > 0.).sum()
|
||
self.gcn_step = int(config.get('gcn_step', 2))
|
||
self.filter_type = config.get('filter_type', 'default')
|
||
self.num_rnn_layers = int(config.get('num_rnn_layers', 1))
|
||
self.rnn_units = int(config.get('rnn_units'))
|
||
self.latent_dim = int(config.get('latent_dim', 4))
|
||
|
||
|
||
class STDENModel(nn.Module, EncoderAttrs):
|
||
"""STDEN主模型:时空微分方程网络"""
|
||
def __init__(self, config):
|
||
nn.Module.__init__(self)
|
||
adj_mx = load_graph(config)
|
||
EncoderAttrs.__init__(self, config['model'], adj_mx)
|
||
|
||
# 识别网络
|
||
self.encoder_z0 = Encoder_z0_RNN(config['model'], adj_mx)
|
||
|
||
model_kwargs = config['model']
|
||
# ODE求解器配置
|
||
self.n_traj_samples = int(model_kwargs.get('n_traj_samples', 1))
|
||
self.ode_method = model_kwargs.get('ode_method', 'dopri5')
|
||
self.atol = float(model_kwargs.get('odeint_atol', 1e-4))
|
||
self.rtol = float(model_kwargs.get('odeint_rtol', 1e-3))
|
||
self.num_gen_layer = int(model_kwargs.get('gen_layers', 1))
|
||
self.ode_gen_dim = int(model_kwargs.get('gen_dim', 64))
|
||
|
||
# 创建ODE函数和求解器
|
||
odefunc = ODEFunc(
|
||
self.ode_gen_dim, self.latent_dim, adj_mx,
|
||
self.gcn_step, self.num_nodes, filter_type=self.filter_type
|
||
)
|
||
|
||
self.diffeq_solver = DiffeqSolver(
|
||
odefunc, self.ode_method, self.latent_dim,
|
||
odeint_rtol=self.rtol, odeint_atol=self.atol
|
||
)
|
||
|
||
# 潜在特征保存设置
|
||
self.save_latent = bool(model_kwargs.get('save_latent', False))
|
||
self.latent_feat = None
|
||
|
||
# 解码器
|
||
self.horizon = int(model_kwargs.get('horizon', 1))
|
||
self.out_feat = int(model_kwargs.get('output_dim', 1))
|
||
self.decoder = Decoder(
|
||
self.out_feat, adj_mx, self.num_nodes, self.num_edges
|
||
)
|
||
|
||
def forward(self, inputs, labels=None, batches_seen=None):
|
||
"""
|
||
seq2seq前向传播
|
||
:param inputs: (seq_len, batch_size, num_edges * input_dim)
|
||
:param labels: (horizon, batch_size, num_edges * output_dim)
|
||
:param batches_seen: 已见批次数量
|
||
:return: outputs: (horizon, batch_size, num_edges * output_dim)
|
||
"""
|
||
# 编码初始潜在状态
|
||
B, T, N, C = inputs.shape
|
||
inputs = inputs.view(T, B, N * C)
|
||
first_point_mu, first_point_std = self.encoder_z0(inputs)
|
||
|
||
# 采样轨迹
|
||
means_z0 = first_point_mu.repeat(self.n_traj_samples, 1, 1)
|
||
sigma_z0 = first_point_std.repeat(self.n_traj_samples, 1, 1)
|
||
first_point_enc = utils.sample_standard_gaussian(means_z0, sigma_z0)
|
||
|
||
# 时间步预测
|
||
time_steps_to_predict = torch.arange(start=0, end=self.horizon, step=1).float()
|
||
time_steps_to_predict = time_steps_to_predict / len(time_steps_to_predict)
|
||
|
||
# ODE求解
|
||
sol_ys, fe = self.diffeq_solver(first_point_enc, time_steps_to_predict)
|
||
|
||
if self.save_latent:
|
||
self.latent_feat = torch.mean(sol_ys.detach(), axis=1)
|
||
# 解码输出
|
||
outputs = self.decoder(sol_ys)
|
||
|
||
outputs = outputs.view(B, T, N, C)
|
||
|
||
return outputs, fe
|
||
|
||
|
||
class Encoder_z0_RNN(nn.Module, EncoderAttrs):
|
||
"""RNN编码器:将输入序列编码为初始潜在状态"""
|
||
def __init__(self, config, adj_mx):
|
||
nn.Module.__init__(self)
|
||
EncoderAttrs.__init__(self, config, adj_mx)
|
||
|
||
self.recg_type = config.get('recg_type', 'gru')
|
||
self.input_dim = int(config.get('input_dim', 1))
|
||
|
||
if self.recg_type == 'gru':
|
||
self.gru_rnn = GRU(self.input_dim, self.rnn_units)
|
||
else:
|
||
raise NotImplementedError("只支持'gru'识别网络")
|
||
|
||
# 隐藏状态到z0的映射
|
||
self.inv_grad = utils.graph_grad(adj_mx).transpose(-2, -1)
|
||
self.inv_grad[self.inv_grad != 0.] = 0.5
|
||
|
||
self.hiddens_to_z0 = nn.Sequential(
|
||
nn.Linear(self.rnn_units, 50),
|
||
nn.Tanh(),
|
||
nn.Linear(50, self.latent_dim * 2)
|
||
)
|
||
utils.init_network_weights(self.hiddens_to_z0)
|
||
|
||
def forward(self, inputs):
|
||
"""
|
||
编码器前向传播
|
||
:param inputs: (seq_len, batch_size, num_edges * input_dim)
|
||
:return: mean, std: (1, batch_size, latent_dim)
|
||
"""
|
||
seq_len, batch_size = inputs.size(0), inputs.size(1)
|
||
|
||
# 重塑输入并处理
|
||
inputs = inputs.reshape(seq_len, batch_size, self.num_nodes, self.input_dim)
|
||
inputs = inputs.reshape(seq_len, batch_size * self.num_nodes, self.input_dim)
|
||
|
||
# GRU处理
|
||
outputs, _ = self.gru_rnn(inputs)
|
||
last_output = outputs[-1]
|
||
|
||
# 重塑并转换维度
|
||
last_output = torch.reshape(last_output, (batch_size, self.num_nodes, -1))
|
||
last_output = torch.transpose(last_output, (-2, -1))
|
||
last_output = torch.matmul(last_output, self.inv_grad).transpose(-2, -1)
|
||
|
||
# 生成均值和标准差
|
||
mean, std = utils.split_last_dim(self.hiddens_to_z0(last_output))
|
||
mean = mean.reshape(batch_size, -1)
|
||
std = std.reshape(batch_size, -1).abs()
|
||
|
||
return mean.unsqueeze(0), std.unsqueeze(0)
|
||
|
||
|
||
class Decoder(nn.Module):
|
||
"""解码器:将潜在状态解码为输出"""
|
||
def __init__(self, output_dim, adj_mx, num_nodes, num_edges):
|
||
super(Decoder, self).__init__()
|
||
self.num_nodes = num_nodes
|
||
self.num_edges = num_edges
|
||
self.grap_grad = utils.graph_grad(adj_mx)
|
||
self.output_dim = output_dim
|
||
|
||
def forward(self, inputs):
|
||
"""
|
||
:param inputs: (horizon, n_traj_samples, batch_size, num_nodes * latent_dim)
|
||
:return: outputs: (horizon, batch_size, num_edges * output_dim)
|
||
"""
|
||
horizon, n_traj_samples, batch_size = inputs.size()[:3]
|
||
|
||
# 重塑输入
|
||
inputs = inputs.reshape(horizon, n_traj_samples, batch_size, self.num_nodes, -1).transpose(-2, -1)
|
||
latent_dim = inputs.size(-2)
|
||
|
||
# 图梯度变换:从节点到边
|
||
outputs = torch.matmul(inputs, self.grap_grad)
|
||
|
||
# 重塑并平均采样轨迹
|
||
outputs = outputs.reshape(horizon, n_traj_samples, batch_size, latent_dim, self.num_nodes, self.output_dim)
|
||
outputs = torch.mean(torch.mean(outputs, axis=3), axis=1)
|
||
outputs = outputs.reshape(horizon, batch_size, -1)
|
||
|
||
return outputs
|
||
|