Project-I/lib/metrics.py

30 lines
896 B
Python

import torch
def masked_mae_loss(y_pred, y_true):
y_true[y_true < 1e-4] = 0
mask = (y_true != 0).float()
mask /= mask.mean() # assign the sample weights of zeros to nonzero-values
loss = torch.abs(y_pred - y_true)
loss = loss * mask
# trick for nans: https://discuss.pytorch.org/t/how-to-set-nan-in-tensor-to-0/3918/3
loss[loss != loss] = 0
return loss.mean()
def masked_mape_loss(y_pred, y_true):
y_true[y_true < 1e-4] = 0
mask = (y_true != 0).float()
mask /= mask.mean()
loss = torch.abs((y_pred - y_true) / y_true)
loss = loss * mask
loss[loss != loss] = 0
return loss.mean()
def masked_rmse_loss(y_pred, y_true):
y_true[y_true < 1e-4] = 0
mask = (y_true != 0).float()
mask /= mask.mean()
loss = torch.pow(y_pred - y_true, 2)
loss = loss * mask
loss[loss != loss] = 0
return torch.sqrt(loss.mean())