Project-I/model/diffeq_solver.py

49 lines
1.8 KiB
Python

import torch
import torch.nn as nn
import time
from torchdiffeq import odeint
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class DiffeqSolver(nn.Module):
def __init__(self, odefunc, method, latent_dim,
odeint_rtol = 1e-4, odeint_atol = 1e-5):
nn.Module.__init__(self)
self.ode_method = method
self.odefunc = odefunc
self.latent_dim = latent_dim
self.rtol = odeint_rtol
self.atol = odeint_atol
def forward(self, first_point, time_steps_to_pred):
"""
Decoder the trajectory through the ODE Solver.
:param time_steps_to_pred: horizon
:param first_point: (n_traj_samples, batch_size, num_nodes * latent_dim)
:return: pred_y: # shape (horizon, n_traj_samples, batch_size, self.num_nodes * self.output_dim)
"""
n_traj_samples, batch_size = first_point.size()[0], first_point.size()[1]
first_point = first_point.reshape(n_traj_samples * batch_size, -1) # reduce the complexity by merging dimension
# pred_y shape: (horizon, n_traj_samples * batch_size, num_nodes * latent_dim)
start_time = time.time()
self.odefunc.nfe = 0
pred_y = odeint(self.odefunc,
first_point,
time_steps_to_pred,
rtol=self.rtol,
atol=self.atol,
method=self.ode_method)
time_fe = time.time() - start_time
# pred_y shape: (horizon, n_traj_samples, batch_size, num_nodes * latent_dim)
pred_y = pred_y.reshape(pred_y.size()[0], n_traj_samples, batch_size, -1)
# assert(pred_y.size()[1] == n_traj_samples)
# assert(pred_y.size()[2] == batch_size)
return pred_y, (self.odefunc.nfe, time_fe)