Update README.md
This commit is contained in:
parent
800254211e
commit
0cc1350f5b
78
README.md
78
README.md
|
|
@ -1 +1,77 @@
|
|||
readme
|
||||
<div align="center">
|
||||
<!-- <h1><b> Time-LLM </b></h1> -->
|
||||
<!-- <h2><b> Time-LLM </b></h2> -->
|
||||
<h2><b> (IJCAI'25) RePST: Language Model Empowered Spatio-Temporal Forecasting via Semantic-Oriented Reprogramming </b></h2>
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
---
|
||||
>
|
||||
> 🙋 Please let us know if you find out a mistake or have any suggestions!
|
||||
>
|
||||
> 🌟 If you find this resource helpful, please consider to star this repository and cite our research:
|
||||
|
||||
```
|
||||
@inproceedings{wang2025repst,
|
||||
title={RePST: Language Model Empowered Spatio-Temporal Forecasting via Semantic-Oriented Reprogramming},
|
||||
author={Wang, Hao and Han, Jindong and Fan, Wei and Sun, Leilei and Liu, Hao},
|
||||
booktitle={Proceedings of the 34th International Joint Conference on Artificial Intelligence},
|
||||
year={2025}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
## Introduction
|
||||
This repository contains the implementation of REPST, a framework for spatio-temporal forecasting that leverages the reasoning and generalization capabilities of Pre-trained Language Models (PLMs). REPST utilizes a semantic-aware spatio-temporal decomposer and selective discrete reprogramming to enable PLMs to handle complex spatio-temporal data, especially in data-scarce environments.
|
||||
|
||||
<p align="center">
|
||||
<img src="./figures/repst.png" height = "360" alt="" align=center />
|
||||
</p>
|
||||
|
||||
- RePST comprises two key components: (1) a dynamic mode decomposition approach that disentangles spatially correlated time series into interpretable components, and (2) an expanded spatio-temporal vocabulary that helps PLMs better understand the dynamics of complex spatio-temporal systems, to guide PLM reasoning.
|
||||
|
||||
<p align="center">
|
||||
<img src="./figures/method-detailed-illustration.png" height = "190" alt="" align=center />
|
||||
</p>
|
||||
|
||||
## Requirements
|
||||
Use python 3.11 from MiniConda
|
||||
|
||||
- torch==2.2.2
|
||||
- accelerate==0.28.0
|
||||
- einops==0.7.0
|
||||
- matplotlib==3.7.0
|
||||
- numpy==1.23.5
|
||||
- pandas==1.5.3
|
||||
- scikit_learn==1.2.2
|
||||
- scipy==1.12.0
|
||||
- tqdm==4.65.0
|
||||
- peft==0.4.0
|
||||
- transformers==4.31.0
|
||||
- deepspeed==0.14.0
|
||||
- sentencepiece==0.2.0
|
||||
|
||||
To install all dependencies:
|
||||
```
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
## Datasets
|
||||
# Pending
|
||||
You can access the well pre-processed datasets from [[Google Drive]](https://drive.google.com/), then place the downloaded contents under `./dataset`
|
||||
|
||||
|
||||
|
||||
## Detailed usage
|
||||
|
||||
Please refer to ```run.py``` for the detailed description of each hyperparameter.
|
||||
|
||||
|
||||
|
||||
|
||||
## Acknowledgement
|
||||
Our baseline model implementation adapts [BasicTS](https://github.com/GestaltCogTeam/BasicTS) as the code base and have extensively modified it to our purposes. We thank the authors for sharing their implementations and related resources.
|
||||
|
|
|
|||
Loading…
Reference in New Issue