27 lines
715 B
Python
27 lines
715 B
Python
import os
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
PROJECT_DIR = os.path.abspath(__file__ + '/../../../..')
|
|
os.chdir(PROJECT_DIR)
|
|
|
|
|
|
# hyper parameterts
|
|
duration = 10000 # time series length
|
|
|
|
def generate_gaussian_noise_sequence():
|
|
x = np.arange(0, duration, 1)
|
|
y = np.random.normal(0, 1, duration)
|
|
return x, y
|
|
|
|
# generate gaussian sequence
|
|
time_points, gaussian_noise_sequence = generate_gaussian_noise_sequence()
|
|
|
|
# save pulse sequence
|
|
data = torch.Tensor(gaussian_noise_sequence).unsqueeze(-1).unsqueeze(-1).numpy()
|
|
# mkdir datasets/raw_data/Gaussian
|
|
if not os.path.exists('datasets/raw_data/Gaussian'):
|
|
os.makedirs('datasets/raw_data/Gaussian')
|
|
np.save('datasets/raw_data/Gaussian/Gaussian.npy', data)
|