Optimize redundant comments

This commit is contained in:
unknown 2022-03-25 10:08:43 +08:00
parent f8a85887a8
commit e041038ed8
4 changed files with 2 additions and 12 deletions

View File

@ -3,7 +3,7 @@
This is the implementation of Spatio-temporal Differential Equation Network (STDEN) in the following paper:
Jiahao Ji, Jingyuan Wang, Zhe Jiang, Jiawei Jiang, and Hu Zhang, Towards Physics-guided Neural Networks for Traffic Flow Prediction, AAAI 2022.
Thanks [chnsh](https://github.com/chnsh/DCRNN_PyTorch) for the model training framework of this project.
The training framework of this project comes from [chnsh](https://github.com/chnsh/DCRNN_PyTorch). Thanks a lot :)
## Requirement

View File

@ -1,7 +1,6 @@
import torch
def masked_mae_loss(y_pred, y_true):
# print('y_pred: ', y_pred.shape, 'y_true: ', y_true.shape)
y_true[y_true < 1e-4] = 0
mask = (y_true != 0).float()
mask /= mask.mean() # assign the sample weights of zeros to nonzero-values
@ -12,23 +11,19 @@ def masked_mae_loss(y_pred, y_true):
return loss.mean()
def masked_mape_loss(y_pred, y_true):
# print('y_pred: ', y_pred.shape, 'y_true: ', y_true.shape)
y_true[y_true < 1e-4] = 0
mask = (y_true != 0).float()
mask /= mask.mean()
loss = torch.abs((y_pred - y_true) / y_true)
loss = loss * mask
# trick for nans: https://discuss.pytorch.org/t/how-to-set-nan-in-tensor-to-0/3918/3
loss[loss != loss] = 0
return loss.mean()
def masked_rmse_loss(y_pred, y_true):
y_true[y_true < 1e-4] = 0
# print('y_pred: ', y_pred.shape, 'y_true: ', y_true.shape)
mask = (y_true != 0).float()
mask /= mask.mean()
loss = torch.pow(y_pred - y_true, 2)
loss = loss * mask
# trick for nans: https://discuss.pytorch.org/t/how-to-set-nan-in-tensor-to-0/3918/3
loss[loss != loss] = 0
return torch.sqrt(loss.mean())

View File

@ -2,16 +2,11 @@ import logging
import numpy as np
import os
import time
import pickle
import scipy.sparse as sp
import sys
# import tensorflow as tf
import torch
import torch.nn as nn
from scipy.sparse import linalg
class DataLoader(object):
def __init__(self, xs, ys, batch_size, pad_with_last_sample=True, shuffle=False):
"""

View File

@ -9,7 +9,7 @@ from torch.utils.tensorboard import SummaryWriter
from lib import utils
from model.stden_model import STDENModel
from lib.metrics import masked_mae_loss, masked_mape_loss, masked_mse_loss, masked_rmse_loss
from lib.metrics import masked_mae_loss, masked_mape_loss, masked_rmse_loss
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")