# Spatio-Temporal Differential Equation Network ![STDEN framework](https://github.com/Echo-Ji/STDEN/blob/main/assets/framework.jpg) This is a Pytroch implementation of Spatio-temporal Differential Equation Network (STDEN) for physics-guided traffic flow prediction, as described in our paper: Jiahao Ji, Jingyuan Wang, Zhe Jiang, Jiawei Jiang, and Hu Zhang, **[STDEN: Towards Physics-Guided Neural Networks for Traffic Flow Prediction](https://ojs.aaai.org/index.php/AAAI/article/view/20322)**, AAAI 2022. The training framework of this project comes from [chnsh](https://github.com/chnsh/DCRNN_PyTorch). Thanks a lot :) ## Requirement * scipy>=1.5.2 * numpy>=1.19.1 * pandas>=1.1.5 * pyyaml>=5.3.1 * pytorch>=1.7.1 * future>=0.18.2 * torchdiffeq>=0.2.0 Dependency can be installed using the following command: ``` pip install -r requirements.txt ``` ## Model Traning and Evaluation You can run the code by ```bash # traning for dataset GT-221 python stden_train.py --config_filename=configs/stden_gt.yaml # testing for dataset GT-221 python stden_eval.py --config_filename=configs/stden_gt.yaml ``` The configuration file of all datasets are as follows: |dataset|config file| |:--|:--| |GT-221|stden_gt.yaml| |WRS-393|stden_wrs.yaml| |ZGC-564|stden_zgc.yaml| Note the data is not public, and I am not allowed to distribute it. ## Cite If you find the paper useful, please cite as following: ```tex @inproceedings{ji2022stden, title={{STDEN}: Towards physics-guided neural networks for traffic flow prediction}, author={Ji, Jiahao and Wang, Jingyuan and Jiang, Zhe and Jiang, Jiawei and Zhang, Hu}, booktitle={Proceedings of the AAAI Conference on Artificial Intelligence}, year={2022}, volume={36}, number={4}, pages={4048-4056} } ```