STDEN/lib/metrics.py

35 lines
1.3 KiB
Python

import torch
def masked_mae_loss(y_pred, y_true):
# print('y_pred: ', y_pred.shape, 'y_true: ', y_true.shape)
y_true[y_true < 1e-4] = 0
mask = (y_true != 0).float()
mask /= mask.mean() # 将0值的权重分配给非零值
loss = torch.abs(y_pred - y_true)
loss = loss * mask
# trick for nans: https://discuss.pytorch.org/t/how-to-set-nan-in-tensor-to-0/3918/3
loss[loss != loss] = 0
return loss.mean()
def masked_mape_loss(y_pred, y_true):
# print('y_pred: ', y_pred.shape, 'y_true: ', y_true.shape)
y_true[y_true < 1e-4] = 0
mask = (y_true != 0).float()
mask /= mask.mean() # 将0值的权重分配给非零值
loss = torch.abs((y_pred - y_true) / y_true)
loss = loss * mask
# trick for nans: https://discuss.pytorch.org/t/how-to-set-nan-in-tensor-to-0/3918/3
loss[loss != loss] = 0
return loss.mean()
def masked_rmse_loss(y_pred, y_true):
y_true[y_true < 1e-4] = 0
# print('y_pred: ', y_pred.shape, 'y_true: ', y_true.shape)
mask = (y_true != 0).float()
mask /= mask.mean()
loss = torch.pow(y_pred - y_true, 2)
loss = loss * mask
# trick for nans: https://discuss.pytorch.org/t/how-to-set-nan-in-tensor-to-0/3918/3
loss[loss != loss] = 0
return torch.sqrt(loss.mean())