Pytorch implementation of Spatoi-temporal Differential Equation Network (STDEN).
Go to file
Echo-Ji 7cc4bc781c README polished 2021-11-07 20:07:38 +08:00
configs first commit 2021-11-07 19:43:38 +08:00
lib first commit 2021-11-07 19:43:38 +08:00
model first commit 2021-11-07 19:43:38 +08:00
.gitignore first commit 2021-11-07 19:43:38 +08:00
LICENSE first commit 2021-11-07 19:43:38 +08:00
README.md README polished 2021-11-07 20:07:38 +08:00
requirements.txt first commit 2021-11-07 19:43:38 +08:00
stden_eval.py first commit 2021-11-07 19:43:38 +08:00
stden_train.py first commit 2021-11-07 19:43:38 +08:00

README.md

STDEN

This is the implementation of Spatio-temporal Differential Equation Network (STDEN) in paper Towards Physics-guided Neural Networks for Traffic Flow Prediction.

Requirement

  • scipy>=1.5.2
  • numpy>=1.19.1
  • pandas>=1.1.5
  • pyyaml>=5.3.1
  • pytorch>=1.7.1
  • future>=0.18.2
  • torchdiffeq>=0.2.0

Dependency can be installed using the following command:

pip install -r requirements.txt

Model Traning and Evaluation

One can run the code by

# traning for dataset GT-221
python stden_train.py --config_filename=configs/stden_gt.yaml

# testing for dataset GT-221
python stden_eval.py --config_filename=configs/stden_gt.yaml

The configuration file of all datasets are as follows:

dataset config file
GT-221 stden_gt.yaml
WRS-393 stden_wrs.yaml
ZGC-564 stden_zgc.yaml

PS: The data is not public and I am not allowed to distribute it.