refactor: 重构数据加载器和训练器代码,优化代码结构和可读性
重构数据加载器模块,使用字典映射替代switch-case结构 简化训练器逻辑,合并重复代码,提高可维护性 优化日志时间格式,缩短显示长度 调整训练配置,减少默认epoch数并启用GPU训练 统一数据加载方式,提取公共方法减少重复代码
This commit is contained in:
parent
97743dfd05
commit
3095b7435b
|
|
@ -2,95 +2,80 @@ import os
|
|||
import numpy as np
|
||||
import h5py
|
||||
|
||||
|
||||
def load_st_dataset(config):
|
||||
dataset = config["basic"]["dataset"]
|
||||
# sample = config["data"]["sample"]
|
||||
# output B, N, D
|
||||
match dataset:
|
||||
case "BeijingAirQuality":
|
||||
data_path = os.path.join("./data/BeijingAirQuality/data.dat")
|
||||
data = np.memmap(data_path, dtype=np.float32, mode='r')
|
||||
L, N, C = 36000, 7, 3
|
||||
data = data.reshape(L, N, C)
|
||||
case "AirQuality":
|
||||
data_path = os.path.join("./data/AirQuality/data.dat")
|
||||
data = np.memmap(data_path, dtype=np.float32, mode='r')
|
||||
L, N, C = 8701,35,6
|
||||
data = data.reshape(L, N, C)
|
||||
case "PEMS-BAY":
|
||||
data_path = os.path.join("./data/PEMS-BAY/pems-bay.h5")
|
||||
with h5py.File(data_path, 'r') as f:
|
||||
data = f['speed']['block0_values'][:]
|
||||
case "METR-LA":
|
||||
data_path = os.path.join("./data/METR-LA/METR-LA.h5")
|
||||
with h5py.File(data_path, 'r') as f:
|
||||
data = f['df']['block0_values'][:]
|
||||
case "SolarEnergy":
|
||||
data_path = os.path.join("./data/SolarEnergy/SolarEnergy.csv")
|
||||
data = np.loadtxt(data_path, delimiter=",")
|
||||
case "PEMSD3":
|
||||
data_path = os.path.join("./data/PEMS03/PEMS03.npz")
|
||||
data = np.load(data_path)["data"][:, :, 0]
|
||||
case "PEMSD4":
|
||||
data_path = os.path.join("./data/PEMS04/PEMS04.npz")
|
||||
data = np.load(data_path)["data"][:, :, 0]
|
||||
case "PEMSD7":
|
||||
data_path = os.path.join("./data/PEMS07/PEMS07.npz")
|
||||
data = np.load(data_path)["data"][:, :, 0]
|
||||
case "PEMSD8":
|
||||
data_path = os.path.join("./data/PEMS08/PEMS08.npz")
|
||||
data = np.load(data_path)["data"][:, :, 0]
|
||||
case "PEMSD7(L)":
|
||||
data_path = os.path.join("./data/PEMS07(L)/PEMS07L.npz")
|
||||
data = np.load(data_path)["data"][:, :, 0]
|
||||
case "PEMSD7(M)":
|
||||
data_path = os.path.join("./data/PEMS07(M)/V_228.csv")
|
||||
data = np.genfromtxt(data_path, delimiter=",")
|
||||
case "BJ":
|
||||
data_path = os.path.join("./data/BJ/BJ500.csv")
|
||||
data = np.genfromtxt(data_path, delimiter=",", skip_header=1)
|
||||
case "Hainan":
|
||||
data_path = os.path.join("./data/Hainan/Hainan.npz")
|
||||
data = np.load(data_path)["data"][:, :, 0]
|
||||
case "SD":
|
||||
data_path = os.path.join("./data/SD/data.npz")
|
||||
data = np.load(data_path)["data"][:, :, 0].astype(np.float32)
|
||||
case "BJTaxi-InFlow":
|
||||
data = read_BeijingTaxi()[:, :, 0:1].astype(np.float32)
|
||||
case "BJTaxi-OutFlow":
|
||||
data = read_BeijingTaxi()[:, :, 1:2].astype(np.float32)
|
||||
case "NYCBike-InFlow":
|
||||
data_path = os.path.join("./data/NYCBike/NYC16x8.h5")
|
||||
with h5py.File(data_path, 'r') as f:
|
||||
data = f['data'][:].astype(np.float32)
|
||||
data = data.transpose(0,2,3,1).reshape(-1, 16*8, 2)
|
||||
data = data[:, :, 0:1]
|
||||
case "NYCBike-OutFlow":
|
||||
data_path = os.path.join("./data/NYCBike/NYC16x8.h5")
|
||||
with h5py.File(data_path, 'r') as f:
|
||||
data = f['data'][:].astype(np.float32)
|
||||
data = data.transpose(0,2,3,1).reshape(-1, 16*8, 2)
|
||||
data = data[:, :, 1:2]
|
||||
case _:
|
||||
|
||||
loaders = {
|
||||
"BeijingAirQuality": lambda: _memmap("./data/BeijingAirQuality/data.dat", 36000, 7, 3),
|
||||
"AirQuality": lambda: _memmap("./data/AirQuality/data.dat", 8701, 35, 6),
|
||||
|
||||
"PEMS-BAY": lambda: _h5("./data/PEMS-BAY/pems-bay.h5", ("speed", "block0_values")),
|
||||
"METR-LA": lambda: _h5("./data/METR-LA/METR-LA.h5", ("df", "block0_values")),
|
||||
|
||||
"SolarEnergy": lambda: np.loadtxt("./data/SolarEnergy/SolarEnergy.csv", delimiter=","),
|
||||
|
||||
"PEMSD3": lambda: _npz("./data/PEMS03/PEMS03.npz"),
|
||||
"PEMSD4": lambda: _npz("./data/PEMS04/PEMS04.npz"),
|
||||
"PEMSD7": lambda: _npz("./data/PEMS07/PEMS07.npz"),
|
||||
"PEMSD8": lambda: _npz("./data/PEMS08/PEMS08.npz"),
|
||||
|
||||
"PEMSD7(L)": lambda: _npz("./data/PEMS07(L)/PEMS07L.npz"),
|
||||
"PEMSD7(M)": lambda: np.genfromtxt("./data/PEMS07(M)/V_228.csv", delimiter=","),
|
||||
|
||||
"BJ": lambda: np.genfromtxt("./data/BJ/BJ500.csv", delimiter=",", skip_header=1),
|
||||
"Hainan": lambda: _npz("./data/Hainan/Hainan.npz"),
|
||||
"SD": lambda: _npz("./data/SD/data.npz", cast=True),
|
||||
|
||||
"BJTaxi-InFlow": lambda: read_BeijingTaxi()[:, :, 0:1].astype(np.float32),
|
||||
"BJTaxi-OutFlow": lambda: read_BeijingTaxi()[:, :, 1:2].astype(np.float32),
|
||||
|
||||
"NYCBike-InFlow": lambda: _nyc_bike(0),
|
||||
"NYCBike-OutFlow": lambda: _nyc_bike(1),
|
||||
}
|
||||
|
||||
if dataset not in loaders:
|
||||
raise ValueError(f"Unsupported dataset: {dataset}")
|
||||
|
||||
# Ensure data shape compatibility
|
||||
if len(data.shape) == 2:
|
||||
data = np.expand_dims(data, axis=-1)
|
||||
data = loaders[dataset]()
|
||||
|
||||
print("加载 %s 数据集中... " % dataset)
|
||||
# return data[::sample]
|
||||
if data.ndim == 2:
|
||||
data = data[..., None]
|
||||
|
||||
print(f"加载 {dataset} 数据集中... ")
|
||||
return data
|
||||
|
||||
|
||||
# ---------------- helpers ----------------
|
||||
def _memmap(path, L, N, C):
|
||||
data = np.memmap(path, dtype=np.float32, mode="r")
|
||||
return data.reshape(L, N, C)
|
||||
|
||||
|
||||
def _h5(path, keys):
|
||||
with h5py.File(path, "r") as f:
|
||||
return f[keys[0]][keys[1]][:]
|
||||
|
||||
|
||||
def _npz(path, cast=False):
|
||||
data = np.load(path)["data"][:, :, 0]
|
||||
return data.astype(np.float32) if cast else data
|
||||
|
||||
|
||||
def _nyc_bike(channel):
|
||||
with h5py.File("./data/NYCBike/NYC16x8.h5", "r") as f:
|
||||
data = f["data"][:].astype(np.float32)
|
||||
data = data.transpose(0, 2, 3, 1).reshape(-1, 16 * 8, 2)
|
||||
return data[:, :, channel:channel + 1]
|
||||
|
||||
|
||||
def read_BeijingTaxi():
|
||||
files = ["TaxiBJ2013.npy", "TaxiBJ2014.npy", "TaxiBJ2015.npy",
|
||||
"TaxiBJ2016_1.npy", "TaxiBJ2016_2.npy"]
|
||||
all_data = []
|
||||
for file in files:
|
||||
data_path = os.path.join(f"./data/BeijingTaxi/{file}")
|
||||
data = np.load(data_path)
|
||||
all_data.append(data)
|
||||
all_data = np.concatenate(all_data, axis=0)
|
||||
time_num = all_data.shape[0]
|
||||
all_data = all_data.transpose(0, 2, 3, 1).reshape(time_num, 32*32, 2)
|
||||
return all_data
|
||||
files = [
|
||||
"TaxiBJ2013.npy", "TaxiBJ2014.npy", "TaxiBJ2015.npy",
|
||||
"TaxiBJ2016_1.npy", "TaxiBJ2016_2.npy",
|
||||
]
|
||||
data = np.concatenate(
|
||||
[np.load(f"./data/BeijingTaxi/{f}") for f in files], axis=0
|
||||
)
|
||||
T = data.shape[0]
|
||||
return data.transpose(0, 2, 3, 1).reshape(T, 32 * 32, 2)
|
||||
|
|
|
|||
|
|
@ -8,21 +8,12 @@ from dataloader.Informer_loader import get_dataloader as Informer_loader
|
|||
|
||||
|
||||
def get_dataloader(config, normalizer, single):
|
||||
TS_model = ["iTransformer", "HI", "PatchTST"]
|
||||
model_name = config["basic"]["model"]
|
||||
# if model_name == "Informer":
|
||||
# return Informer_loader(config, normalizer, single)
|
||||
# elif model_name in TS_model:
|
||||
# return TS_loader(config, normalizer, single)
|
||||
# else :
|
||||
match model_name:
|
||||
case "STGNCDE":
|
||||
return cde_loader(config, normalizer, single)
|
||||
case "STGNRDE":
|
||||
return nrde_loader(config, normalizer, single)
|
||||
case "DCRNN":
|
||||
return DCRNN_loader(config, normalizer, single)
|
||||
case "EXP":
|
||||
return EXP_loader(config, normalizer, single)
|
||||
case _:
|
||||
return normal_loader(config, normalizer, single)
|
||||
loader_map = {
|
||||
"STGNCDE": cde_loader,
|
||||
"STGNRDE": nrde_loader,
|
||||
"DCRNN": DCRNN_loader,
|
||||
"EXP": EXP_loader,
|
||||
}
|
||||
return loader_map.get(config["basic"]["model"], normal_loader)(
|
||||
config, normalizer, single
|
||||
)
|
||||
|
|
|
|||
8
train.py
8
train.py
|
|
@ -11,9 +11,9 @@ def read_config(config_path):
|
|||
config = yaml.safe_load(file)
|
||||
|
||||
# 全局配置
|
||||
device = "cpu" # 指定设备为cuda:0
|
||||
device = "cuda:0" # 指定设备为cuda:0
|
||||
seed = 2023 # 随机种子
|
||||
epochs = 120
|
||||
epochs = 1
|
||||
|
||||
# 拷贝项
|
||||
config["basic"]["device"] = device
|
||||
|
|
@ -65,8 +65,8 @@ def main(debug=False):
|
|||
model_list = ["iTransformer"]
|
||||
# 指定数据集
|
||||
# dataset_list = ["AirQuality", "SolarEnergy", "PEMS-BAY", "METR-LA", "BJTaxi-Inflow", "BJTaxi-Outflow", "NYCBike-Inflow", "NYCBike-Outflow"]
|
||||
dataset_list = ["AirQuality"]
|
||||
# dataset_list = ["AirQuality", "SolarEnergy", "METR-LA", "NYCBike-Inflow", "NYCBike-Outflow"]
|
||||
# dataset_list = ["AirQuality"]
|
||||
dataset_list = ["AirQuality", "SolarEnergy", "METR-LA", "NYCBike-Inflow", "NYCBike-Outflow"]
|
||||
|
||||
# 我的调试开关,不做测试就填 str(False)
|
||||
# os.environ["TRY"] = str(False)
|
||||
|
|
|
|||
|
|
@ -1,296 +1,195 @@
|
|||
import math
|
||||
import os
|
||||
import time
|
||||
import copy
|
||||
import torch
|
||||
import os, time, copy, torch
|
||||
from tqdm import tqdm
|
||||
from utils.logger import get_logger
|
||||
from utils.loss_function import all_metrics
|
||||
from tqdm import tqdm
|
||||
|
||||
class TSWrapper:
|
||||
def __init__(self, args):
|
||||
self.b = args['train']['batch_size']
|
||||
self.t = args['data']['lag']
|
||||
self.n = args['data']['num_nodes']
|
||||
self.c = args['data']['input_dim']
|
||||
|
||||
|
||||
def transpose(self, x : torch.Tensor):
|
||||
def forward(self, x):
|
||||
# [b, t, n, c] -> [b*n, t, c]
|
||||
self.b = x.shape[0]
|
||||
x = x[..., :-2]
|
||||
x = x.permute(0, 2, 1, 3)
|
||||
x = x.reshape(self.b*self.n, self.t, self.c)
|
||||
return x
|
||||
b, t, n, c = x.shape
|
||||
x = x[..., :-2].permute(0, 2, 1, 3).reshape(b * n, t, c-2)
|
||||
return x, b, t, n, c
|
||||
|
||||
def inv_transpose(self, x : torch.Tensor):
|
||||
x = x.reshape(self.b, self.n, self.t, self.c)
|
||||
x = x.permute(0, 2, 1, 3)
|
||||
return x
|
||||
def inverse(self, x, b, t, n, c):
|
||||
return x.reshape(b, n, t, c-2).permute(0, 2, 1, 3)
|
||||
|
||||
|
||||
class Trainer:
|
||||
"""模型训练器,负责整个训练流程的管理"""
|
||||
|
||||
def __init__(self, model, loss, optimizer,
|
||||
train_loader, val_loader, test_loader, scaler,
|
||||
args, lr_scheduler=None,):
|
||||
# 设备和基本参数
|
||||
train_loader, val_loader, test_loader,
|
||||
scaler, args, lr_scheduler=None):
|
||||
|
||||
self.config = args
|
||||
self.device = args["basic"]["device"]
|
||||
train_args = args["train"]
|
||||
# 模型和训练相关组件
|
||||
self.model = model
|
||||
self.args = args["train"]
|
||||
|
||||
self.model = model.to(self.device)
|
||||
self.loss = loss
|
||||
self.optimizer = optimizer
|
||||
self.lr_scheduler = lr_scheduler
|
||||
# 数据加载器
|
||||
|
||||
self.train_loader = train_loader
|
||||
self.val_loader = val_loader
|
||||
self.val_loader = val_loader or test_loader
|
||||
self.test_loader = test_loader
|
||||
# 数据处理工具
|
||||
self.scaler = scaler
|
||||
self.args = train_args
|
||||
self.ts_wrapper = TSWrapper(args)
|
||||
# 初始化路径、日志和统计
|
||||
self._initialize_paths(train_args)
|
||||
self._initialize_logger(train_args)
|
||||
|
||||
def _initialize_paths(self, args):
|
||||
"""初始化模型保存路径"""
|
||||
self.best_path = os.path.join(args["log_dir"], "best_model.pth")
|
||||
self.best_test_path = os.path.join(args["log_dir"], "best_test_model.pth")
|
||||
self.loss_figure_path = os.path.join(args["log_dir"], "loss.png")
|
||||
self.ts = TSWrapper(args)
|
||||
self._init_paths()
|
||||
self._init_logger()
|
||||
|
||||
def _initialize_logger(self, args):
|
||||
"""初始化日志记录器"""
|
||||
if not os.path.isdir(args["log_dir"]) and not args["debug"]:
|
||||
os.makedirs(args["log_dir"], exist_ok=True)
|
||||
self.logger = get_logger(args["log_dir"], name=self.model.__class__.__name__, debug=args["debug"])
|
||||
self.logger.info(f"Experiment log path in: {args['log_dir']}")
|
||||
# ---------------- init ----------------
|
||||
def _init_paths(self):
|
||||
d = self.args["log_dir"]
|
||||
self.best_path = os.path.join(d, "best_model.pth")
|
||||
self.best_test_path = os.path.join(d, "best_test_model.pth")
|
||||
|
||||
def _run_epoch(self, epoch, dataloader, mode):
|
||||
"""运行一个训练/验证/测试epoch"""
|
||||
# 设置模型模式和是否进行优化
|
||||
if mode == "train": self.model.train(); optimizer_step = True
|
||||
else: self.model.eval(); optimizer_step = False
|
||||
def _init_logger(self):
|
||||
if not self.args["debug"]:
|
||||
os.makedirs(self.args["log_dir"], exist_ok=True)
|
||||
self.logger = get_logger(
|
||||
self.args["log_dir"],
|
||||
name=self.model.__class__.__name__,
|
||||
debug=self.args["debug"],
|
||||
)
|
||||
|
||||
# 初始化变量
|
||||
total_loss = 0
|
||||
epoch_time = time.time()
|
||||
# ---------------- epoch ----------------
|
||||
def _run_epoch(self, epoch, loader, mode):
|
||||
is_train = mode == "train"
|
||||
self.model.train() if is_train else self.model.eval()
|
||||
|
||||
total_loss, start = 0.0, time.time()
|
||||
y_pred, y_true = [], []
|
||||
|
||||
# 训练/验证循环
|
||||
with torch.set_grad_enabled(optimizer_step):
|
||||
progress_bar = tqdm(
|
||||
enumerate(dataloader),
|
||||
total=len(dataloader),
|
||||
desc=f"{mode.capitalize()} Epoch {epoch}"
|
||||
)
|
||||
for _, (data, target) in progress_bar:
|
||||
# 转移数据
|
||||
data = data.to(self.device)
|
||||
target = target.to(self.device)
|
||||
with torch.set_grad_enabled(is_train):
|
||||
for data, target in tqdm(loader, desc=f"{mode} {epoch}", total=len(loader)):
|
||||
data, target = data.to(self.device), target.to(self.device)
|
||||
label = target[..., :self.args["output_dim"]]
|
||||
# 转换为 [b*n, t, c]
|
||||
data = self.ts_wrapper.transpose(data)
|
||||
# 计算loss和反归一化loss
|
||||
output = self.model(data)
|
||||
# 转换回[b, t, n, c]
|
||||
output = self.ts_wrapper.inv_transpose(output)
|
||||
# 我的调试开关
|
||||
|
||||
x, b, t, n, c = self.ts.forward(data)
|
||||
out = self.model(x)
|
||||
out = self.ts.inverse(out, b, t, n, c)
|
||||
|
||||
if os.environ.get("TRY") == "True":
|
||||
print(f"[{'✅' if output.shape == label.shape else '❌'}]: output: {output.shape}, label: {label.shape}")
|
||||
assert False
|
||||
loss = self.loss(output, label)
|
||||
d_output = self.scaler.inverse_transform(output)
|
||||
d_label = self.scaler.inverse_transform(label)
|
||||
d_loss = self.loss(d_output, d_label)
|
||||
# 累积损失和预测结果
|
||||
print(out.shape, label.shape)
|
||||
assert out.shape == label.shape
|
||||
|
||||
loss = self.loss(out, label)
|
||||
d_out = self.scaler.inverse_transform(out)
|
||||
d_lbl = self.scaler.inverse_transform(label)
|
||||
d_loss = self.loss(d_out, d_lbl)
|
||||
|
||||
total_loss += d_loss.item()
|
||||
y_pred.append(d_output.detach().cpu())
|
||||
y_true.append(d_label.detach().cpu())
|
||||
# 反向传播和优化(仅在训练模式)
|
||||
if optimizer_step and self.optimizer is not None:
|
||||
y_pred.append(d_out.detach().cpu())
|
||||
y_true.append(d_lbl.detach().cpu())
|
||||
|
||||
if is_train and self.optimizer:
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
# 梯度裁剪(如果需要)
|
||||
if self.args["grad_norm"]:
|
||||
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args["max_grad_norm"])
|
||||
torch.nn.utils.clip_grad_norm_(
|
||||
self.model.parameters(),
|
||||
self.args["max_grad_norm"]
|
||||
)
|
||||
self.optimizer.step()
|
||||
# 更新进度条
|
||||
progress_bar.set_postfix(loss=d_loss.item())
|
||||
|
||||
# 合并所有批次的预测结果
|
||||
y_pred = torch.cat(y_pred, dim=0)
|
||||
y_true = torch.cat(y_true, dim=0)
|
||||
# 计算损失并记录指标
|
||||
avg_loss = total_loss / len(dataloader)
|
||||
mae, rmse, mape = all_metrics(y_pred, y_true, self.args["mae_thresh"], self.args["mape_thresh"])
|
||||
self.logger.info(
|
||||
f"Epoch #{epoch:02d}: {mode.capitalize():<5} "
|
||||
f"MAE:{mae:5.2f} | RMSE:{rmse:5.2f} | MAPE:{mape:7.4f} | Time: {time.time() - epoch_time:.2f} s"
|
||||
y_pred = torch.cat(y_pred)
|
||||
y_true = torch.cat(y_true)
|
||||
|
||||
mae, rmse, mape = all_metrics(
|
||||
y_pred, y_true,
|
||||
self.args["mae_thresh"],
|
||||
self.args["mape_thresh"]
|
||||
)
|
||||
return avg_loss
|
||||
|
||||
def train_epoch(self, epoch):
|
||||
return self._run_epoch(epoch, self.train_loader, "train")
|
||||
|
||||
def val_epoch(self, epoch):
|
||||
return self._run_epoch(epoch, self.val_loader or self.test_loader, "val")
|
||||
|
||||
def test_epoch(self, epoch):
|
||||
return self._run_epoch(epoch, self.test_loader, "test")
|
||||
self.logger.info(
|
||||
f"Epoch #{epoch:02d} {mode:<5} "
|
||||
f"MAE:{mae:5.2f} RMSE:{rmse:5.2f} "
|
||||
f"MAPE:{mape:7.4f} Time:{time.time()-start:.2f}s"
|
||||
)
|
||||
return total_loss / len(loader)
|
||||
|
||||
# ---------------- train ----------------
|
||||
def train(self):
|
||||
# 初始化记录
|
||||
best_model, best_test_model = None, None
|
||||
best_loss, best_test_loss = float("inf"), float("inf")
|
||||
not_improved_count = 0
|
||||
# 开始训练
|
||||
self.logger.info("Training process started")
|
||||
# 训练循环
|
||||
best, best_test = float("inf"), float("inf")
|
||||
best_w, best_test_w = None, None
|
||||
patience = 0
|
||||
|
||||
self.logger.info("Training started")
|
||||
|
||||
for epoch in range(1, self.args["epochs"] + 1):
|
||||
# 训练、验证和测试一个epoch
|
||||
train_epoch_loss = self.train_epoch(epoch)
|
||||
val_epoch_loss = self.val_epoch(epoch)
|
||||
test_epoch_loss = self.test_epoch(epoch)
|
||||
# 检查梯度爆炸
|
||||
if train_epoch_loss > 1e6:
|
||||
self.logger.warning("Gradient explosion detected. Ending...")
|
||||
losses = {
|
||||
"train": self._run_epoch(epoch, self.train_loader, "train"),
|
||||
"val": self._run_epoch(epoch, self.val_loader, "val"),
|
||||
"test": self._run_epoch(epoch, self.test_loader, "test"),
|
||||
}
|
||||
|
||||
if losses["train"] > 1e6:
|
||||
self.logger.warning("Gradient explosion detected")
|
||||
break
|
||||
# 更新最佳验证模型
|
||||
if val_epoch_loss < best_loss:
|
||||
best_loss = val_epoch_loss
|
||||
not_improved_count = 0
|
||||
best_model = copy.deepcopy(self.model.state_dict())
|
||||
self.logger.info("Best validation model saved!")
|
||||
|
||||
if losses["val"] < best:
|
||||
best, patience = losses["val"], 0
|
||||
best_w = copy.deepcopy(self.model.state_dict())
|
||||
self.logger.info("Best validation model saved")
|
||||
else:
|
||||
not_improved_count += 1
|
||||
# 早停
|
||||
if self._should_early_stop(not_improved_count):
|
||||
patience += 1
|
||||
|
||||
if self.args["early_stop"] and patience == self.args["early_stop_patience"]:
|
||||
self.logger.info("Early stopping triggered")
|
||||
break
|
||||
# 更新最佳测试模型
|
||||
if test_epoch_loss < best_test_loss:
|
||||
best_test_loss = test_epoch_loss
|
||||
best_test_model = copy.deepcopy(self.model.state_dict())
|
||||
# 保存最佳模型
|
||||
|
||||
if losses["test"] < best_test:
|
||||
best_test = losses["test"]
|
||||
best_test_w = copy.deepcopy(self.model.state_dict())
|
||||
|
||||
if not self.args["debug"]:
|
||||
self._save_best_models(best_model, best_test_model)
|
||||
# 最终评估
|
||||
self._finalize_training(best_model, best_test_model)
|
||||
torch.save(best_w, self.best_path)
|
||||
torch.save(best_test_w, self.best_test_path)
|
||||
|
||||
def _should_early_stop(self, not_improved_count):
|
||||
"""检查是否满足早停条件"""
|
||||
if (
|
||||
self.args["early_stop"]
|
||||
and not_improved_count == self.args["early_stop_patience"]
|
||||
):
|
||||
self.logger.info(
|
||||
f"Validation performance didn't improve for {self.args['early_stop_patience']} epochs. Training stops."
|
||||
)
|
||||
return True
|
||||
return False
|
||||
self._final_test(best_w, best_test_w)
|
||||
|
||||
def _save_best_models(self, best_model, best_test_model):
|
||||
"""保存最佳模型到文件"""
|
||||
torch.save(best_model, self.best_path)
|
||||
torch.save(best_test_model, self.best_test_path)
|
||||
self.logger.info(
|
||||
f"Best models saved at {self.best_path} and {self.best_test_path}"
|
||||
)
|
||||
# ---------------- final test ----------------
|
||||
def _final_test(self, best_w, best_test_w):
|
||||
for name, w in [("best val", best_w), ("best test", best_test_w)]:
|
||||
self.model.load_state_dict(w)
|
||||
self.logger.info(f"Testing on {name} model")
|
||||
self.evaluate()
|
||||
|
||||
def _log_model_params(self):
|
||||
"""输出模型可训练参数数量"""
|
||||
total_params = sum( p.numel() for p in self.model.parameters() if p.requires_grad)
|
||||
self.logger.info(f"Trainable params: {total_params}")
|
||||
|
||||
|
||||
def _finalize_training(self, best_model, best_test_model):
|
||||
self.model.load_state_dict(best_model)
|
||||
self.logger.info("Testing on best validation model")
|
||||
self.test(self.model, self.config, self.test_loader, self.scaler, self.logger)
|
||||
self.model.load_state_dict(best_test_model)
|
||||
self.logger.info("Testing on best test model")
|
||||
self.test(self.model, self.config, self.test_loader, self.scaler, self.logger)
|
||||
|
||||
@staticmethod
|
||||
def test(model, args, data_loader, scaler, logger, path=None):
|
||||
"""对模型进行评估并输出性能指标"""
|
||||
# 确定设备信息
|
||||
device = None
|
||||
output_dim = None
|
||||
# 处理不同的参数格式
|
||||
if isinstance(args, dict):
|
||||
if "basic" in args:
|
||||
# 完整配置情况
|
||||
device = args["basic"]["device"]
|
||||
output_dim = args["train"]["output_dim"]
|
||||
else:
|
||||
# 只有train_args情况,从模型获取设备
|
||||
device = next(model.parameters()).device
|
||||
output_dim = args["output_dim"]
|
||||
else:
|
||||
raise ValueError(f"Unsupported args type: {type(args)}")
|
||||
|
||||
# 加载模型检查点(如果提供了路径)
|
||||
if path:
|
||||
checkpoint = torch.load(path)
|
||||
model.load_state_dict(checkpoint["state_dict"])
|
||||
model.to(device)
|
||||
|
||||
# 设置为评估模式
|
||||
model.eval()
|
||||
|
||||
# 收集预测和真实标签
|
||||
# ---------------- evaluate ----------------
|
||||
def evaluate(self):
|
||||
self.model.eval()
|
||||
y_pred, y_true = [], []
|
||||
|
||||
# 不计算梯度的情况下进行预测
|
||||
with torch.no_grad():
|
||||
for data, target in data_loader:
|
||||
# 将数据和标签移动到指定设备
|
||||
data = data.to(device)
|
||||
target = target.to(device)
|
||||
for data, target in self.test_loader:
|
||||
data, target = data.to(self.device), target.to(self.device)
|
||||
label = target[..., :self.args["output_dim"]]
|
||||
|
||||
data = data[..., :-2]
|
||||
b, t, n, c = data.shape
|
||||
data = data.permute(0, 2, 1, 3)
|
||||
data = data.reshape(b*n, t, c)
|
||||
label = target[..., : output_dim]
|
||||
output = model(data)
|
||||
output = output.reshape(b, n, t, c)
|
||||
output = output.permute(0, 2, 1, 3)
|
||||
x, b, t, n, c = self.ts.forward(data)
|
||||
out = self.model(x)
|
||||
out = self.ts.inverse(out, b, t, n, c)
|
||||
|
||||
y_pred.append(output.detach().cpu())
|
||||
y_true.append(label.detach().cpu())
|
||||
y_pred.append(out.cpu())
|
||||
y_true.append(label.cpu())
|
||||
|
||||
d_y_pred = scaler.inverse_transform(torch.cat(y_pred, dim=0))
|
||||
d_y_true = scaler.inverse_transform(torch.cat(y_true, dim=0))
|
||||
d_pred = self.scaler.inverse_transform(torch.cat(y_pred))
|
||||
d_true = self.scaler.inverse_transform(torch.cat(y_true))
|
||||
|
||||
# 获取metrics参数
|
||||
if "basic" in args:
|
||||
# 完整配置情况
|
||||
mae_thresh = args["train"]["mae_thresh"]
|
||||
mape_thresh = args["train"]["mape_thresh"]
|
||||
else:
|
||||
# 只有train_args情况
|
||||
mae_thresh = args["mae_thresh"]
|
||||
mape_thresh = args["mape_thresh"]
|
||||
|
||||
# 计算并记录每个时间步的指标
|
||||
for t in range(d_y_true.shape[1]):
|
||||
for t in range(d_true.shape[1]):
|
||||
mae, rmse, mape = all_metrics(
|
||||
d_y_pred[:, t, ...],
|
||||
d_y_true[:, t, ...],
|
||||
mae_thresh,
|
||||
mape_thresh,
|
||||
d_pred[:, t], d_true[:, t],
|
||||
self.args["mae_thresh"],
|
||||
self.args["mape_thresh"]
|
||||
)
|
||||
self.logger.info(
|
||||
f"Horizon {t+1:02d} MAE:{mae:.4f} RMSE:{rmse:.4f} MAPE:{mape:.4f}"
|
||||
)
|
||||
logger.info(f"Horizon {t + 1:02d}, MAE: {mae:.4f}, RMSE: {rmse:.4f}, MAPE: {mape:.4f}")
|
||||
|
||||
# 计算并记录平均指标
|
||||
mae, rmse, mape = all_metrics(d_y_pred, d_y_true, mae_thresh, mape_thresh)
|
||||
logger.info( f"Average Horizon, MAE: {mae:.4f}, RMSE: {rmse:.4f}, MAPE: {mape:.4f}")
|
||||
avg_mae, avg_rmse, avg_mape = all_metrics(d_pred, d_true, self.args["mae_thresh"], self.args["mape_thresh"])
|
||||
self.logger.info(
|
||||
f"AVG MAE:{avg_mae:.4f} AVG RMSE:{avg_rmse:.4f} AVG MAPE:{avg_mape:.4f}"
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _compute_sampling_threshold(global_step, k):
|
||||
return k / (k + math.exp(global_step / k))
|
||||
|
|
|
|||
|
|
@ -1,4 +1,3 @@
|
|||
import math
|
||||
import os
|
||||
import time
|
||||
import copy
|
||||
|
|
@ -8,240 +7,100 @@ from utils.loss_function import all_metrics
|
|||
from tqdm import tqdm
|
||||
|
||||
class Trainer:
|
||||
"""模型训练器,负责整个训练流程的管理"""
|
||||
|
||||
def __init__(self, model, loss, optimizer, train_loader, val_loader, test_loader, scaler, args, lr_scheduler=None):
|
||||
# 设备和基本参数
|
||||
self.config = args
|
||||
self.device = args["basic"]["device"]
|
||||
self.args = args["train"]
|
||||
|
||||
# 模型和训练相关组件
|
||||
self.config, self.device, self.args = args, args["basic"]["device"], args["train"]
|
||||
self.model, self.loss, self.optimizer, self.lr_scheduler = model, loss, optimizer, lr_scheduler
|
||||
self.train_loader, self.val_loader, self.test_loader, self.scaler = train_loader, val_loader, test_loader, scaler
|
||||
|
||||
# 数据加载器
|
||||
self.train_loader, self.val_loader, self.test_loader = train_loader, val_loader, test_loader
|
||||
log_dir = self.args["log_dir"]
|
||||
self.best_path, self.best_test_path = [os.path.join(log_dir, f"best_{suffix}_model.pth") for suffix in ["", "test"]]
|
||||
|
||||
# 数据处理工具
|
||||
self.scaler = scaler
|
||||
|
||||
# 初始化路径、日志和统计
|
||||
self._initialize_paths(self.args)
|
||||
self._initialize_logger(self.args)
|
||||
|
||||
def _initialize_paths(self, args):
|
||||
"""初始化模型保存路径"""
|
||||
log_dir = args["log_dir"]
|
||||
self.best_path = os.path.join(log_dir, "best_model.pth")
|
||||
self.best_test_path = os.path.join(log_dir, "best_test_model.pth")
|
||||
self.loss_figure_path = os.path.join(log_dir, "loss.png")
|
||||
|
||||
def _initialize_logger(self, args):
|
||||
"""初始化日志记录器"""
|
||||
log_dir = args["log_dir"]
|
||||
if not args["debug"]:
|
||||
os.makedirs(log_dir, exist_ok=True)
|
||||
self.logger = get_logger(log_dir, name=self.model.__class__.__name__, debug=args["debug"])
|
||||
if not self.args["debug"]: os.makedirs(log_dir, exist_ok=True)
|
||||
self.logger = get_logger(log_dir, name=self.model.__class__.__name__, debug=self.args["debug"])
|
||||
self.logger.info(f"Experiment log path in: {log_dir}")
|
||||
|
||||
def _run_epoch(self, epoch, dataloader, mode):
|
||||
"""运行一个训练/验证/测试epoch"""
|
||||
# 设置模型模式和是否进行优化
|
||||
self.model.train() if mode == "train" else self.model.eval()
|
||||
optimizer_step = mode == "train"
|
||||
|
||||
# 初始化变量
|
||||
total_loss = 0
|
||||
epoch_time = time.time()
|
||||
y_pred, y_true = [], []
|
||||
|
||||
# 训练/验证循环
|
||||
with torch.set_grad_enabled(optimizer_step):
|
||||
progress_bar = tqdm(
|
||||
dataloader,
|
||||
total=len(dataloader),
|
||||
desc=f"{mode.capitalize()} Epoch {epoch}"
|
||||
)
|
||||
for data, target in progress_bar:
|
||||
# 转移数据并提取标签
|
||||
data, target = data.to(self.device), target.to(self.device)
|
||||
label = target[..., : self.args["output_dim"]]
|
||||
|
||||
# 计算输出
|
||||
output = self.model(data)
|
||||
|
||||
# 我的调试开关
|
||||
if os.environ.get("TRY") == "True":
|
||||
status = '✅' if output.shape == label.shape else '❌'
|
||||
print(f"[{status}]: output: {output.shape}, label: {label.shape}")
|
||||
assert False
|
||||
|
||||
# 计算损失
|
||||
loss = self.loss(output, label)
|
||||
d_output = self.scaler.inverse_transform(output)
|
||||
d_label = self.scaler.inverse_transform(label)
|
||||
d_loss = self.loss(d_output, d_label)
|
||||
|
||||
# 累积损失和预测结果
|
||||
total_loss += d_loss.item()
|
||||
y_pred.append(d_output.detach().cpu())
|
||||
y_true.append(d_label.detach().cpu())
|
||||
|
||||
# 反向传播和优化(仅在训练模式)
|
||||
if optimizer_step and self.optimizer is not None:
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
|
||||
# 梯度裁剪(如果需要)
|
||||
if self.args["grad_norm"]:
|
||||
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args["max_grad_norm"])
|
||||
|
||||
self.optimizer.step()
|
||||
|
||||
# 更新进度条
|
||||
progress_bar.set_postfix(loss=d_loss.item())
|
||||
|
||||
# 合并所有批次的预测结果
|
||||
y_pred, y_true = torch.cat(y_pred, dim=0), torch.cat(y_true, dim=0)
|
||||
|
||||
# 计算损失并记录指标
|
||||
avg_loss = total_loss / len(dataloader)
|
||||
mae, rmse, mape = all_metrics(y_pred, y_true, self.args["mae_thresh"], self.args["mape_thresh"])
|
||||
|
||||
self.logger.info(
|
||||
f"Epoch #{epoch:02d}: {mode.capitalize():<5} "
|
||||
f"MAE:{mae:5.2f} | RMSE:{rmse:5.2f} | MAPE:{mape:7.4f} | Time: {time.time() - epoch_time:.2f} s"
|
||||
)
|
||||
|
||||
return avg_loss
|
||||
|
||||
def train(self):
|
||||
# 初始化记录
|
||||
best_model = best_test_model = None
|
||||
best_loss = best_test_loss = float("inf")
|
||||
not_improved_count = 0
|
||||
|
||||
# 开始训练
|
||||
self.logger.info("Training process started")
|
||||
|
||||
# 训练循环
|
||||
for epoch in range(1, self.args["epochs"] + 1):
|
||||
# 训练、验证和测试一个epoch
|
||||
train_epoch_loss = self._run_epoch(epoch, self.train_loader, "train")
|
||||
val_epoch_loss = self._run_epoch(epoch, self.val_loader or self.test_loader, "val")
|
||||
test_epoch_loss = self._run_epoch(epoch, self.test_loader, "test")
|
||||
train_loss = self._run_epoch(epoch, self.train_loader, "train")
|
||||
val_loss = self._run_epoch(epoch, self.val_loader or self.test_loader, "val")
|
||||
test_loss = self._run_epoch(epoch, self.test_loader, "test")
|
||||
|
||||
# 检查梯度爆炸
|
||||
if train_epoch_loss > 1e6:
|
||||
if train_loss > 1e6:
|
||||
self.logger.warning("Gradient explosion detected. Ending...")
|
||||
break
|
||||
|
||||
# 更新最佳验证模型
|
||||
if val_epoch_loss < best_loss:
|
||||
best_loss, not_improved_count = val_epoch_loss, 0
|
||||
best_model = copy.deepcopy(self.model.state_dict())
|
||||
if val_loss < best_loss:
|
||||
best_loss, not_improved_count, best_model = val_loss, 0, copy.deepcopy(self.model.state_dict())
|
||||
self.logger.info("Best validation model saved!")
|
||||
else:
|
||||
not_improved_count += 1
|
||||
|
||||
# 早停检查
|
||||
if self._should_early_stop(not_improved_count):
|
||||
elif self.args["early_stop"] and (not_improved_count := not_improved_count + 1) == self.args["early_stop_patience"]:
|
||||
self.logger.info(f"Validation performance didn't improve for {self.args['early_stop_patience']} epochs. Training stops.")
|
||||
break
|
||||
|
||||
# 更新最佳测试模型
|
||||
if test_epoch_loss < best_test_loss:
|
||||
best_test_loss = test_epoch_loss
|
||||
best_test_model = copy.deepcopy(self.model.state_dict())
|
||||
if test_loss < best_test_loss:
|
||||
best_test_loss, best_test_model = test_loss, copy.deepcopy(self.model.state_dict())
|
||||
|
||||
# 保存最佳模型
|
||||
if not self.args["debug"]:
|
||||
self._save_best_models(best_model, best_test_model)
|
||||
|
||||
# 最终评估
|
||||
self._finalize_training(best_model, best_test_model)
|
||||
|
||||
def _should_early_stop(self, not_improved_count):
|
||||
"""检查是否满足早停条件"""
|
||||
if self.args["early_stop"] and not_improved_count == self.args["early_stop_patience"]:
|
||||
self.logger.info(
|
||||
f"Validation performance didn't improve for {self.args['early_stop_patience']} epochs. Training stops."
|
||||
)
|
||||
return True
|
||||
return False
|
||||
|
||||
def _save_best_models(self, best_model, best_test_model):
|
||||
"""保存最佳模型到文件"""
|
||||
torch.save(best_model, self.best_path)
|
||||
torch.save(best_test_model, self.best_test_path)
|
||||
self.logger.info(
|
||||
f"Best models saved at {self.best_path} and {self.best_test_path}"
|
||||
)
|
||||
self.logger.info(f"Best models saved at {self.best_path} and {self.best_test_path}")
|
||||
|
||||
def _log_model_params(self):
|
||||
"""输出模型可训练参数数量"""
|
||||
total_params = sum( p.numel() for p in self.model.parameters() if p.requires_grad)
|
||||
self.logger.info(f"Trainable params: {total_params}")
|
||||
for model_name, state_dict in [("best validation", best_model), ("best test", best_test_model)]:
|
||||
self.model.load_state_dict(state_dict)
|
||||
self.logger.info(f"Testing on {model_name} model")
|
||||
self._run_epoch(None, self.test_loader, "test", log_horizon=True)
|
||||
|
||||
def _run_epoch(self, epoch, dataloader, mode, log_horizon=False):
|
||||
self.model.train() if mode == "train" else self.model.eval()
|
||||
optimizer_step = mode == "train"
|
||||
|
||||
def _finalize_training(self, best_model, best_test_model):
|
||||
self.model.load_state_dict(best_model)
|
||||
self.logger.info("Testing on best validation model")
|
||||
self.test(self.model, self.config, self.test_loader, self.scaler, self.logger)
|
||||
self.model.load_state_dict(best_test_model)
|
||||
self.logger.info("Testing on best test model")
|
||||
self.test(self.model, self.config, self.test_loader, self.scaler, self.logger)
|
||||
|
||||
@staticmethod
|
||||
def test(model, args, data_loader, scaler, logger, path=None):
|
||||
"""对模型进行评估并输出性能指标"""
|
||||
# 验证参数类型
|
||||
if not isinstance(args, dict):
|
||||
raise ValueError(f"Unsupported args type: {type(args)}")
|
||||
|
||||
# 确定设备和输出维度
|
||||
is_full_config = "basic" in args
|
||||
device = args["basic"]["device"] if is_full_config else next(model.parameters()).device
|
||||
output_dim = args["train"]["output_dim"] if is_full_config else args["output_dim"]
|
||||
|
||||
# 获取metrics参数
|
||||
train_args = args["train"] if is_full_config else args
|
||||
mae_thresh, mape_thresh = train_args["mae_thresh"], train_args["mape_thresh"]
|
||||
|
||||
# 加载模型检查点(如果提供了路径)
|
||||
if path:
|
||||
checkpoint = torch.load(path)
|
||||
model.load_state_dict(checkpoint["state_dict"])
|
||||
model.to(device)
|
||||
|
||||
# 设置为评估模式并收集预测结果
|
||||
model.eval()
|
||||
total_loss, epoch_time = 0, time.time()
|
||||
y_pred, y_true = [], []
|
||||
|
||||
# 不计算梯度的情况下进行预测
|
||||
with torch.no_grad():
|
||||
for data, target in data_loader:
|
||||
# 将数据和标签移动到指定设备
|
||||
data, target = data.to(device), target.to(device)
|
||||
label = target[..., : output_dim]
|
||||
with torch.set_grad_enabled(optimizer_step):
|
||||
for data, target in tqdm(dataloader, total=len(dataloader), desc=f"{mode.capitalize()} Epoch {epoch}" if epoch else mode):
|
||||
data, target = data.to(self.device), target.to(self.device)
|
||||
label = target[..., :self.args["output_dim"]]
|
||||
|
||||
output = model(data)
|
||||
y_pred.append(output.detach().cpu())
|
||||
y_true.append(label.detach().cpu())
|
||||
output = self.model(data)
|
||||
loss = self.loss(output, label)
|
||||
d_output, d_label = self.scaler.inverse_transform(output), self.scaler.inverse_transform(label)
|
||||
d_loss = self.loss(d_output, d_label)
|
||||
|
||||
# 反归一化并计算指标
|
||||
d_y_pred = scaler.inverse_transform(torch.cat(y_pred, dim=0))
|
||||
d_y_true = scaler.inverse_transform(torch.cat(y_true, dim=0))
|
||||
total_loss += d_loss.item()
|
||||
y_pred.append(d_output.detach().cpu())
|
||||
y_true.append(d_label.detach().cpu())
|
||||
|
||||
# 计算并记录每个时间步的指标
|
||||
for t in range(d_y_true.shape[1]):
|
||||
mae, rmse, mape = all_metrics(
|
||||
d_y_pred[:, t, ...],
|
||||
d_y_true[:, t, ...],
|
||||
mae_thresh,
|
||||
mape_thresh,
|
||||
)
|
||||
logger.info(f"Horizon {t + 1:02d}, MAE: {mae:.4f}, RMSE: {rmse:.4f}, MAPE: {mape:.4f}")
|
||||
if optimizer_step and self.optimizer:
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
if self.args["grad_norm"]: torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args["max_grad_norm"])
|
||||
self.optimizer.step()
|
||||
|
||||
# 计算并记录平均指标
|
||||
avg_mae, avg_rmse, avg_mape = all_metrics(d_y_pred, d_y_true, mae_thresh, mape_thresh)
|
||||
logger.info(f"Average Horizon, MAE: {avg_mae:.4f}, RMSE: {avg_rmse:.4f}, MAPE: {avg_mape:.4f}")
|
||||
y_pred, y_true = torch.cat(y_pred, dim=0), torch.cat(y_true, dim=0)
|
||||
|
||||
if log_horizon:
|
||||
for t in range(y_true.shape[1]):
|
||||
mae, rmse, mape = all_metrics(y_pred[:, t, ...], y_true[:, t, ...], self.args["mae_thresh"], self.args["mape_thresh"])
|
||||
self.logger.info(f"Horizon {t + 1:02d}, MAE: {mae:.4f}, RMSE: {rmse:.4f}, MAPE: {mape:.4f}")
|
||||
|
||||
avg_mae, avg_rmse, avg_mape = all_metrics(y_pred, y_true, self.args["mae_thresh"], self.args["mape_thresh"])
|
||||
|
||||
if epoch and mode:
|
||||
self.logger.info(f"Epoch #{epoch:02d}: {mode.capitalize():<5} MAE:{avg_mae:5.2f} | RMSE:{avg_rmse:5.2f} | MAPE:{avg_mape:7.4f} | Time: {time.time()-epoch_time:.2f} s")
|
||||
elif mode:
|
||||
self.logger.info(f"{mode.capitalize():<5} MAE:{avg_mae:.4f} | RMSE:{avg_rmse:.4f} | MAPE:{avg_mape:.4f}")
|
||||
|
||||
return total_loss / len(dataloader)
|
||||
|
||||
def test(self, path=None):
|
||||
if path:
|
||||
self.model.load_state_dict(torch.load(path)["state_dict"])
|
||||
self.model.to(self.device)
|
||||
|
||||
self._run_epoch(None, self.test_loader, "test", log_horizon=True)
|
||||
|
|
|
|||
|
|
@ -7,132 +7,31 @@ from trainer.E32Trainer import Trainer as EXP_Trainer
|
|||
from trainer.InformerTrainer import InformerTrainer
|
||||
from trainer.TSTrainer import Trainer as TSTrainer
|
||||
|
||||
|
||||
def select_trainer(
|
||||
model,
|
||||
loss,
|
||||
optimizer,
|
||||
train_loader,
|
||||
val_loader,
|
||||
test_loader,
|
||||
scaler,
|
||||
args,
|
||||
lr_scheduler,
|
||||
kwargs,
|
||||
model, loss, optimizer,
|
||||
train_loader, val_loader, test_loader,
|
||||
scaler, args, lr_scheduler, kwargs
|
||||
):
|
||||
model_name = args["basic"]["model"]
|
||||
TS_model = ["HI", "PatchTST", "iTransformer"]
|
||||
if model_name in TS_model:
|
||||
return TSTrainer(
|
||||
model,
|
||||
loss,
|
||||
optimizer,
|
||||
train_loader,
|
||||
val_loader,
|
||||
test_loader,
|
||||
scaler,
|
||||
args,
|
||||
lr_scheduler,
|
||||
base_args = (
|
||||
model, loss, optimizer,
|
||||
train_loader, val_loader, test_loader,
|
||||
scaler, args, lr_scheduler
|
||||
)
|
||||
|
||||
if model_name in {"HI", "PatchTST", "iTransformer"}:
|
||||
return TSTrainer(*base_args)
|
||||
|
||||
match model_name:
|
||||
case "STGNCDE":
|
||||
return cdeTrainer(
|
||||
model,
|
||||
loss,
|
||||
optimizer,
|
||||
train_loader,
|
||||
val_loader,
|
||||
test_loader,
|
||||
scaler,
|
||||
args,
|
||||
lr_scheduler,
|
||||
kwargs[0],
|
||||
None,
|
||||
)
|
||||
case "STGNRDE":
|
||||
return cdeTrainer(
|
||||
model,
|
||||
loss,
|
||||
optimizer,
|
||||
train_loader,
|
||||
val_loader,
|
||||
test_loader,
|
||||
scaler,
|
||||
args,
|
||||
lr_scheduler,
|
||||
kwargs[0],
|
||||
None,
|
||||
)
|
||||
case "DCRNN":
|
||||
return DCRNN_Trainer(
|
||||
model,
|
||||
loss,
|
||||
optimizer,
|
||||
train_loader,
|
||||
val_loader,
|
||||
test_loader,
|
||||
scaler,
|
||||
args,
|
||||
lr_scheduler,
|
||||
)
|
||||
case "PDG2SEQ":
|
||||
return PDG2SEQ_Trainer(
|
||||
model,
|
||||
loss,
|
||||
optimizer,
|
||||
train_loader,
|
||||
val_loader,
|
||||
test_loader,
|
||||
scaler,
|
||||
args,
|
||||
lr_scheduler,
|
||||
)
|
||||
case "STMLP":
|
||||
return STMLP_Trainer(
|
||||
model,
|
||||
loss,
|
||||
optimizer,
|
||||
train_loader,
|
||||
val_loader,
|
||||
test_loader,
|
||||
scaler,
|
||||
args,
|
||||
lr_scheduler,
|
||||
)
|
||||
case "EXP":
|
||||
return EXP_Trainer(
|
||||
model,
|
||||
loss,
|
||||
optimizer,
|
||||
train_loader,
|
||||
val_loader,
|
||||
test_loader,
|
||||
scaler,
|
||||
args,
|
||||
lr_scheduler,
|
||||
)
|
||||
case "Informer":
|
||||
return InformerTrainer(
|
||||
model,
|
||||
loss,
|
||||
optimizer,
|
||||
train_loader,
|
||||
val_loader,
|
||||
test_loader,
|
||||
scaler,
|
||||
args,
|
||||
lr_scheduler,
|
||||
)
|
||||
case _:
|
||||
return Trainer(
|
||||
model,
|
||||
loss,
|
||||
optimizer,
|
||||
train_loader,
|
||||
val_loader,
|
||||
test_loader,
|
||||
scaler,
|
||||
args,
|
||||
lr_scheduler,
|
||||
)
|
||||
trainer_map = {
|
||||
"DCRNN": DCRNN_Trainer,
|
||||
"PDG2SEQ": PDG2SEQ_Trainer,
|
||||
"STMLP": STMLP_Trainer,
|
||||
"EXP": EXP_Trainer,
|
||||
"Informer": InformerTrainer,
|
||||
}
|
||||
|
||||
if model_name in {"STGNCDE", "STGNRDE"}:
|
||||
return cdeTrainer(*base_args, kwargs[0], None)
|
||||
|
||||
return trainer_map.get(model_name, Trainer)(*base_args)
|
||||
|
|
|
|||
|
|
@ -18,7 +18,7 @@ def get_logger(root, name=None, debug=True):
|
|||
logger.handlers.clear()
|
||||
|
||||
# 时间格式改为 年/月/日 时:分:秒
|
||||
formatter = logging.Formatter("%(asctime)s - %(message)s", "%Y/%m/%d %H:%M:%S")
|
||||
formatter = logging.Formatter("%(asctime)s - %(message)s", "%m/%d %H:%M")
|
||||
|
||||
# 控制台输出
|
||||
console_handler = logging.StreamHandler()
|
||||
|
|
|
|||
Loading…
Reference in New Issue