diff --git a/.gitignore b/.gitignore index a332757..46aa946 100644 --- a/.gitignore +++ b/.gitignore @@ -5,6 +5,7 @@ experiments/ *.csv *.npz *.pkl +data/ # ---> Python # Byte-compiled / optimized / DLL files diff --git a/config/args_parser.py b/config/args_parser.py index f2f57df..a028671 100644 --- a/config/args_parser.py +++ b/config/args_parser.py @@ -3,11 +3,11 @@ import yaml def parse_args(): parser = argparse.ArgumentParser(description='Model Training and Testing') - parser.add_argument('--dataset', default='PEMSD7(L)', type=str) + parser.add_argument('--dataset', default='PEMSD8', type=str) parser.add_argument('--mode', default='train', type=str) parser.add_argument('--device', default='cuda:0', type=str, help='Indices of GPUs') parser.add_argument('--debug', default=False, type=eval) - parser.add_argument('--model', default='DDGCRN', type=str) + parser.add_argument('--model', default='GWN', type=str) parser.add_argument('--cuda', default=True, type=bool) parser.add_argument('--sample', default=1, type=int) parser.add_argument('--emb', default=12, type=int) diff --git a/dataloader/cde_loader/cdeDataloader.py b/dataloader/cde_loader/cdeDataloader.py index 1a7565c..a2a1fd3 100644 --- a/dataloader/cde_loader/cdeDataloader.py +++ b/dataloader/cde_loader/cdeDataloader.py @@ -1,4 +1,4 @@ -import controldiffeq +import model.STGNCDE.controldiffeq from lib.normalization import normalize_dataset import numpy as np import gc diff --git a/lib/Download_data.py b/lib/Download_data.py new file mode 100644 index 0000000..9cc0006 --- /dev/null +++ b/lib/Download_data.py @@ -0,0 +1,146 @@ +import os +import requests +import zipfile +import shutil +import kagglehub # 假设 kagglehub 是一个可用的库 +from tqdm import tqdm + +# 定义文件完整性信息的字典 + + +def check_and_download_data(): + """ + 检查 data 文件夹的完整性,并根据缺失文件类型下载相应数据。 + """ + current_working_dir = os.getcwd() # 获取当前工作目录 + data_dir = os.path.join(current_working_dir, "data") # 假设 data 文件夹在当前工作目录下 + + expected_structure = { + "PEMS03": ["PEMS03.csv", "PEMS03.npz", "PEMS03.txt", "PEMS03_dtw_distance.npy", "PEMS03_spatial_distance.npy"], + "PEMS04": ["PEMS04.csv", "PEMS04.npz", "PEMS04_dtw_distance.npy", "PEMS04_spatial_distance.npy"], + "PEMS07": ["PEMS07.csv", "PEMS07.npz", "PEMS07_dtw_distance.npy", "PEMS07_spatial_distance.npy"], + "PEMS08": ["PEMS08.csv", "PEMS08.npz", "PEMS08_dtw_distance.npy", "PEMS08_spatial_distance.npy"] + } + + current_dir = os.getcwd() # 获取当前工作目录 + missing_adj = False + missing_main_files = False + + # 检查 data 文件夹是否存在 + if not os.path.exists(data_dir) or not os.path.isdir(data_dir): + # print(f"目录 {data_dir} 不存在。") + print("正在下载所有必要的数据文件...") + missing_adj = True + missing_main_files = True + else: + # 检查根目录下的 get_adj.py 文件 + if "get_adj.py" not in os.listdir(data_dir): + # print(f"根目录下缺少文件 get_adj.py。") + missing_adj = True + + # 遍历预期的文件结构 + for subfolder, expected_files in expected_structure.items(): + subfolder_path = os.path.join(data_dir, subfolder) + + # 检查子文件夹是否存在 + if not os.path.exists(subfolder_path) or not os.path.isdir(subfolder_path): + # print(f"子文件夹 {subfolder} 不存在。") + missing_main_files = True + continue + + # 获取子文件夹中的实际文件列表 + actual_files = os.listdir(subfolder_path) + + # 检查是否缺少文件 + for expected_file in expected_files: + if expected_file not in actual_files: + # print(f"子文件夹 {subfolder} 中缺少文件 {expected_file}。") + if "_dtw_distance.npy" in expected_file or "_spatial_distance.npy" in expected_file: + missing_adj = True + else: + missing_main_files = True + + # 根据缺失文件类型调用下载逻辑 + if missing_adj: + download_adj_data(current_dir) + if missing_main_files: + download_kaggle_data(current_dir) + + return True + + +def download_adj_data(current_dir, max_retries=3): + """ + 下载并解压 adj.zip 文件,并显示下载进度条。 + 如果下载失败,最多重试 max_retries 次。 + """ + url = "https://code.zhang-heng.com/static/adj.zip" + retries = 0 + + while retries <= max_retries: + try: + print(f"正在从 {url} 下载邻接矩阵文件...") + response = requests.get(url, stream=True) + + if response.status_code == 200: + total_size = int(response.headers.get('content-length', 0)) + block_size = 1024 # 1KB + t = tqdm(total=total_size, unit='B', unit_scale=True, desc="下载进度") + + zip_file_path = os.path.join(current_dir, "adj.zip") + with open(zip_file_path, 'wb') as f: + for data in response.iter_content(block_size): + f.write(data) + t.update(len(data)) + t.close() + + # print("下载完成,文件已保存到:", zip_file_path) + + if os.path.exists(zip_file_path): + with zipfile.ZipFile(zip_file_path, 'r') as zip_ref: + zip_ref.extractall(current_dir) + # print("数据集已解压到:", current_dir) + os.remove(zip_file_path) # 删除zip文件 + else: + print("未找到下载的zip文件,跳过解压。") + break # 下载成功,退出循环 + else: + print(f"下载失败,状态码: {response.status_code}。请检查链接是否有效。") + except Exception as e: + print(f"下载或解压数据集时出错: {e}") + print("如果链接无效,请检查URL的合法性或稍后重试。") + + retries += 1 + if retries > max_retries: + raise Exception(f"下载失败,已达到最大重试次数({max_retries}次)。请检查链接或网络连接。") + + +def download_kaggle_data(current_dir): + """ + 下载 KaggleHub 数据集,并将 data 文件夹合并到当前工作目录。 + 如果目标文件夹已存在,会覆盖冲突的文件。 + """ + try: + print("正在下载 KaggleHub 数据集...") + path = kagglehub.dataset_download("elmahy/pems-dataset") + # print("Path to KaggleHub dataset files:", path) + + if os.path.exists(path): + data_folder_path = os.path.join(path, "data") + if os.path.exists(data_folder_path): + destination_path = os.path.join(current_dir, "data") + + # 使用 shutil.copytree 合并文件夹,覆盖冲突的文件 + shutil.copytree(data_folder_path, destination_path, dirs_exist_ok=True) + # print(f"data 文件夹已合并到: {destination_path}") + # else: + # print("未找到 data 文件夹,跳过合并操作。") + # else: + # print("未找到 KaggleHub 数据集路径,跳过处理。") + except Exception as e: + print(f"下载或处理 KaggleHub 数据集时出错: {e}") + + +# 主程序 +if __name__ == "__main__": + check_and_download_data() \ No newline at end of file diff --git a/run.py b/run.py index 53bfd90..1b4bc03 100644 --- a/run.py +++ b/run.py @@ -1,6 +1,11 @@ import os import shutil +# 检查数据集完整性 +from lib.Download_data import check_and_download_data +data_complete = check_and_download_data() +assert data_complete is not None, "数据集下载失败,请重试!" + import torch from datetime import datetime # import time @@ -8,9 +13,10 @@ from datetime import datetime from config.args_parser import parse_args from lib.initializer import init_model, init_optimizer from lib.loss_function import get_loss_function + from dataloader.loader_selector import get_dataloader from trainer.trainer_selector import select_trainer -import yaml # 需要安装 PyYAML 库:pip install pyyaml +import yaml def main(): @@ -24,6 +30,7 @@ def main(): args['device'] = 'cpu' args['model']['device'] = args['device'] + # Initialize model model = init_model(args['model'], device=args['device'])