更新EXP模型,添加周期性数据处理和时间特征,优化数据加载器和训练器,支持新的EXP32模型结构

This commit is contained in:
czzhangheng 2025-05-08 22:43:33 +08:00
parent 1be0b59344
commit 4f7fb52707
7 changed files with 230 additions and 54 deletions

View File

@ -12,12 +12,14 @@ data:
add_day_in_week: True
steps_per_day: 288
days_per_week: 7
cycle: 288
model:
batch_size: 64
input_dim: 1
output_dim: 1
in_len: 12
cycle_len: 288
train:
@ -36,6 +38,7 @@ train:
max_grad_norm: 5
real_value: True
test:
mae_thresh: null
mape_thresh: 0.0

View File

@ -1,94 +1,95 @@
from lib.normalization import normalize_dataset
import numpy as np
import gc
import os
import torch
import h5py
from lib.normalization import normalize_dataset
def get_dataloader(args, normalizer='std', single=True):
data = load_st_dataset(args['type'], args['sample']) # 加载数据
L, N, F = data.shape # 数据形状
# args should now include 'cycle'
data = load_st_dataset(args['type'], args['sample']) # [T, N, F]
L, N, F = data.shape
# Step 1: data -> x,y
# compute cycle index
cycle_arr = np.arange(L) % args['cycle'] # length-L array
# Step 1: sliding windows for X and Y
x = add_window_x(data, args['lag'], args['horizon'], single)
y = add_window_y(data, args['lag'], args['horizon'], single)
# window count = M = L - lag - horizon + 1
M = x.shape[0]
del data
gc.collect()
# Step 2: time_in_day, day_in_week -> day, week
time_in_day = [i % args['steps_per_day'] / args['steps_per_day'] for i in range(L)]
time_in_day = np.tile(np.array(time_in_day), [1, N, 1]).transpose((2, 1, 0))
day_in_week = [(i // args['steps_per_day']) % args['days_per_week'] for i in range(L)]
day_in_week = np.tile(np.array(day_in_week), [1, N, 1]).transpose((2, 1, 0))
# Step 2: time features
time_in_day = np.tile(
np.array([i % args['steps_per_day'] / args['steps_per_day'] for i in range(L)]),
(N, 1)
).T.reshape(L, N, 1)
day_in_week = np.tile(
np.array([(i // args['steps_per_day']) % args['days_per_week'] for i in range(L)]),
(N, 1)
).T.reshape(L, N, 1)
x_day = add_window_x(time_in_day, args['lag'], args['horizon'], single)
x_week = add_window_x(day_in_week, args['lag'], args['horizon'], single)
# Step 3 day, week, x, y --> x, y
x = np.concatenate([x, x_day, x_week], axis=-1)
# del x_day, x_week
# gc.collect()
del x_day, x_week
gc.collect()
# Step 3: extract cycle index per window: take value at end of sequence
cycle_win = np.array([cycle_arr[i + args['lag']] for i in range(M)]) # shape [M]
# Step 4 x,y --> x_train, x_val, x_test, y_train, y_val, y_test
# Step 4: split into train/val/test
if args['test_ratio'] > 1:
x_train, x_val, x_test = split_data_by_days(x, args['val_ratio'], args['test_ratio'])
y_train, y_val, y_test = split_data_by_days(y, args['val_ratio'], args['test_ratio'])
c_train, c_val, c_test = split_data_by_days(cycle_win, args['val_ratio'], args['test_ratio'])
else:
x_train, x_val, x_test = split_data_by_ratio(x, args['val_ratio'], args['test_ratio'])
y_train, y_val, y_test = split_data_by_ratio(y, args['val_ratio'], args['test_ratio'])
c_train, c_val, c_test = split_data_by_ratio(cycle_win, args['val_ratio'], args['test_ratio'])
# del x, y, cycle_win
# gc.collect()
del x
gc.collect()
# Normalization
# Step 5: normalization on X only
scaler = normalize_dataset(x_train[..., :args['input_dim']], normalizer, args['column_wise'])
x_train[..., :args['input_dim']] = scaler.transform(x_train[..., :args['input_dim']])
x_val[..., :args['input_dim']] = scaler.transform(x_val[..., :args['input_dim']])
x_test[..., :args['input_dim']] = scaler.transform(x_test[..., :args['input_dim']])
# add time features to Y
y_day = add_window_y(time_in_day, args['lag'], args['horizon'], single)
y_week = add_window_y(day_in_week, args['lag'], args['horizon'], single)
del time_in_day, day_in_week
gc.collect()
y = np.concatenate([y, y_day, y_week], axis=-1)
# del y_day, y_week, time_in_day, day_in_week
# gc.collect()
del y_day, y_week
gc.collect()
# Split Y
# split Y time-augmented
if args['test_ratio'] > 1:
y_train, y_val, y_test = split_data_by_days(y, args['val_ratio'], args['test_ratio'])
else:
y_train, y_val, y_test = split_data_by_ratio(y, args['val_ratio'], args['test_ratio'])
# del y
del y
gc.collect()
# Step 6: create dataloaders including cycle index
train_loader = data_loader_with_cycle(x_train, y_train, c_train, args['batch_size'], shuffle=True, drop_last=True)
val_loader = data_loader_with_cycle(x_val, y_val, c_val, args['batch_size'], shuffle=False, drop_last=True)
test_loader = data_loader_with_cycle(x_test, y_test, c_test, args['batch_size'], shuffle=False, drop_last=False)
# Step 5: x_train y_train x_val y_val x_test y_test --> train val test
# train_dataloader = data_loader(x_train[..., :args['input_dim']], y_train[..., :args['input_dim']], args['batch_size'], shuffle=True, drop_last=True)
train_dataloader = data_loader(x_train, y_train, args['batch_size'], shuffle=True, drop_last=True)
return train_loader, val_loader, test_loader, scaler
del x_train, y_train
gc.collect()
# val_dataloader = data_loader(x_val[..., :args['input_dim']], y_val[..., :args['input_dim']], args['batch_size'], shuffle=False, drop_last=True)
val_dataloader = data_loader(x_val, y_val, args['batch_size'], shuffle=False, drop_last=True)
def data_loader_with_cycle(X, Y, C, batch_size, shuffle=True, drop_last=True):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
X_t = torch.tensor(X, dtype=torch.float32, device=device)
Y_t = torch.tensor(Y, dtype=torch.float32, device=device)
C_t = torch.tensor(C, dtype=torch.long, device=device).unsqueeze(-1) # [B,1]
dataset = torch.utils.data.TensorDataset(X_t, Y_t, C_t)
loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last)
return loader
del x_val, y_val
gc.collect()
# Rest of the helper functions (load_st_dataset, split_data..., add_window_x/y) unchanged
# test_dataloader = data_loader(x_test[..., :args['input_dim']], y_test[..., :args['input_dim']], args['batch_size'], shuffle=False, drop_last=False)
test_dataloader = data_loader(x_test, y_test, args['batch_size'], shuffle=False, drop_last=False)
del x_test, y_test
gc.collect()
return train_dataloader, val_dataloader, test_dataloader, scaler
def load_st_dataset(dataset, sample):
# output B, N, D

View File

@ -1,11 +1,13 @@
from dataloader.cde_loader.cdeDataloader import get_dataloader as cde_loader
from dataloader.PeMSDdataloader import get_dataloader as normal_loader
from dataloader.DCRNNdataloader import get_dataloader as DCRNN_loader
from dataloader.EXPdataloader import get_dataloader as EXP_loader
def get_dataloader(config, normalizer, single):
match config['model']['type']:
case 'STGNCDE': return cde_loader(config['data'], normalizer, single)
case 'DCRNN': return DCRNN_loader(config['data'], normalizer, single)
case 'EXP': return EXP_loader(config['data'], normalizer, single)
case _: return normal_loader(config['data'], normalizer, single)

View File

@ -0,0 +1,168 @@
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
# ------------------------- CycleNet Component -------------------------
class RecurrentCycle(nn.Module):
"""Efficient cyclic data removal/addition."""
def __init__(self, cycle_len, channel_size):
super().__init__()
self.cycle_len = cycle_len
self.channel_size = channel_size
# 初始化周期缓存shape (cycle_len, channel_size)
self.data = nn.Parameter(torch.zeros(cycle_len, channel_size))
def forward(self, index, length):
# index: (B,), length: seq_len 或 pred_len
B = index.size(0)
# 生成 [0,1,...,length-1] 的偏移shape (1, length)
arange = torch.arange(length, device=index.device).unsqueeze(0)
# 对每条样本的起始 index 加 arange 并对 cycle_len 取模
idx = (index.unsqueeze(1) + arange) % self.cycle_len # (B, length)
# 返回对应的周期值 (B, length, channel_size)
return self.data[idx]
# ------------------------- Core Blocks -------------------------
class DynamicGraphConstructor(nn.Module):
def __init__(self, node_num, embed_dim):
super().__init__()
self.nodevec1 = nn.Parameter(torch.randn(node_num, embed_dim))
self.nodevec2 = nn.Parameter(torch.randn(node_num, embed_dim))
def forward(self):
adj = F.relu(torch.matmul(self.nodevec1, self.nodevec2.T))
return F.softmax(adj, dim=-1)
class GraphConvBlock(nn.Module):
def __init__(self, input_dim, output_dim):
super().__init__()
self.theta = nn.Linear(input_dim, output_dim)
self.residual = (input_dim == output_dim)
if not self.residual:
self.res_proj = nn.Linear(input_dim, output_dim)
def forward(self, x, adj):
res = x
x = torch.matmul(adj, x)
x = self.theta(x)
if not self.residual:
res = self.res_proj(res)
return F.relu(x + res)
class MANBA_Block(nn.Module):
def __init__(self, input_dim, hidden_dim):
super().__init__()
self.attn = nn.MultiheadAttention(embed_dim=input_dim, num_heads=4, batch_first=True)
self.ffn = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, input_dim)
)
self.norm1 = nn.LayerNorm(input_dim)
self.norm2 = nn.LayerNorm(input_dim)
def forward(self, x):
res = x
x_attn, _ = self.attn(x, x, x)
x = self.norm1(res + x_attn)
res2 = x
x_ffn = self.ffn(x)
return self.norm2(res2 + x_ffn)
class SandwichBlock(nn.Module):
def __init__(self, num_nodes, embed_dim, hidden_dim):
super().__init__()
self.manba1 = MANBA_Block(hidden_dim, hidden_dim * 2)
self.graph_constructor = DynamicGraphConstructor(num_nodes, embed_dim)
self.gc = GraphConvBlock(hidden_dim, hidden_dim)
self.manba2 = MANBA_Block(hidden_dim, hidden_dim * 2)
def forward(self, h):
h1 = self.manba1(h)
adj = self.graph_constructor()
h2 = self.gc(h1, adj)
return self.manba2(h2)
class MLP(nn.Module):
def __init__(self, in_dim, hidden_dims, out_dim, activation=nn.ReLU):
super().__init__()
dims = [in_dim] + hidden_dims + [out_dim]
layers = []
for i in range(len(dims) - 2):
layers += [nn.Linear(dims[i], dims[i+1]), activation()]
layers.append(nn.Linear(dims[-2], dims[-1]))
self.net = nn.Sequential(*layers)
def forward(self, x):
return self.net(x)
# ------------------------- EXP with CycleNet -------------------------
class EXP(nn.Module):
def __init__(self, args):
super().__init__()
self.horizon = args['horizon'] # 预测步长
self.output_dim = args['output_dim'] # 输出维度 (一般=1)
self.seq_len = args.get('in_len', 12) # 输入序列长度
self.hidden_dim = args.get('hidden_dim', 64)
self.num_nodes = args['num_nodes']
self.embed_dim = args.get('embed_dim', 16)
# 时间嵌入
self.time_slots = args.get('time_slots', 288)
self.time_embedding = nn.Embedding(self.time_slots, self.hidden_dim)
self.day_embedding = nn.Embedding(7, self.hidden_dim)
# CycleNet
self.cycleQueue = RecurrentCycle(cycle_len=args['cycle_len'], channel_size=self.num_nodes)
# 输入投影 (序列长度 -> 隐藏维度)
self.input_proj = MLP(self.seq_len, [self.hidden_dim], self.hidden_dim)
# 两层 Sandwich
self.sandwich1 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim)
self.sandwich2 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim)
# 输出投影
self.out_proj = MLP(self.hidden_dim, [2*self.hidden_dim], self.horizon * self.output_dim)
def forward(self, x, cycle_index):
# x: (B, T, N, D>=3)
# 1) 拆流量和时间特征,保证丢掉通道维
x_flow = x[..., 0] # -> (B, T, N) or (B, T, N, 1) 如果之前切片错用了0:1
x_time = x[..., 1]
x_day = x[..., 2]
B, T, N = x_flow.shape
# DEBUG 打印(可删除)
# print("DEBUG x_flow.dim(), shape:", x_flow.dim(), x_flow.shape)
# 2) 去周期化
cyc = self.cycleQueue(cycle_index, T).squeeze(1) # (B, T, N)
x_flow = x_flow - cyc
# 3) 序列投影
h0 = x_flow.permute(0, 2, 1).reshape(B * N, T) # -> (B*N, T)
h0 = self.input_proj(h0).view(B, N, self.hidden_dim)
# 4) 加时间嵌入
t_idx = (x_time[:, -1] * (self.time_slots - 1)).long() # (B, N)
d_idx = x_day[:, -1].long() # (B, N)
h0 = h0 + self.time_embedding(t_idx) + self.day_embedding(d_idx)
# 5) Sandwich Blocks
h1 = self.sandwich1(h0) + h0
h2 = self.sandwich2(h1)
# 6) 输出投影并 reshape
out = self.out_proj(h2) # (B, N, H*O)
out = out.view(B, N, self.horizon, self.output_dim) # (B, N, H, O)
out = out.permute(0, 2, 1, 3) # (B, H, N, O)
# 加回周期
idx_out = (cycle_index + self.seq_len) % self.cycleQueue.cycle_len
cyc_out = self.cycleQueue(idx_out, self.horizon) # (B, 1, H, N)
# squeeze 掉第1维并 unsqueeze 最后一维
cyc_out = cyc_out.squeeze(1).unsqueeze(-1) # (B, H, N, 1)
# 加回周期分量
return out + cyc_out

View File

@ -15,7 +15,7 @@ from model.STGODE.STGODE import ODEGCN
from model.PDG2SEQ.PDG2Seqb import PDG2Seq
from model.STID.STID import STID
from model.STAEFormer.STAEFormer import STAEformer
from model.EXP.EXP31 import EXP as EXP
from model.EXP.EXP32 import EXP as EXP
def model_selector(model):
match model['type']:

View File

@ -39,6 +39,7 @@ class Trainer:
is_train = (mode == 'train')
self.model.train() if is_train else self.model.eval()
total_loss = 0.0
epoch_time = time.time()
with torch.set_grad_enabled(is_train), \
tqdm(total=len(dataloader), desc=f'{mode.capitalize()} Epoch {epoch}') as pbar:
@ -83,7 +84,8 @@ class Trainer:
pbar.set_postfix(loss=loss.item())
avg_loss = total_loss / len(dataloader)
self.logger.info(f'{mode.capitalize()} Epoch {epoch}: avg Loss: {avg_loss:.6f}')
self.logger.info(
f'{mode.capitalize()} Epoch {epoch}: average Loss: {avg_loss:.6f}, time: {time.time() - epoch_time:.2f} s')
return avg_loss
def train_epoch(self, epoch):
@ -154,9 +156,9 @@ class Trainer:
y_pred, y_true = [], []
with torch.no_grad():
for data, target in data_loader:
for data, target, cycle_index in data_loader:
label = target[..., :args['output_dim']]
output = model(data)
output = model(data, cycle_index)
y_pred.append(output)
y_true.append(label)

View File

@ -2,7 +2,7 @@ from trainer.Trainer import Trainer
from trainer.cdeTrainer.cdetrainer import Trainer as cdeTrainer
from trainer.DCRNN_Trainer import Trainer as DCRNN_Trainer
from trainer.PDG2SEQ_Trainer import Trainer as PDG2SEQ_Trainer
from trainer.EXP_trainer import Trainer as EXP_Trainer
from trainer.E32Trainer import Trainer as EXP_Trainer
def select_trainer(model, loss, optimizer, train_loader, val_loader, test_loader, scaler, args,