清理repst冗余代码

This commit is contained in:
czzhangheng 2025-11-11 21:00:36 +08:00
parent 8e53d25ab1
commit 6657743afe
3 changed files with 6 additions and 106 deletions

View File

@ -14,92 +14,3 @@ def gumbel_softmax(logits, tau=1, k=1000, hard=True):
y_hard.scatter_(0, indices, 1) y_hard.scatter_(0, indices, 1)
return torch.squeeze(y_hard, dim=-1) return torch.squeeze(y_hard, dim=-1)
return torch.squeeze(y_soft, dim=-1) return torch.squeeze(y_soft, dim=-1)
class Normalize(nn.Module):
def __init__(self, num_features: int, eps=1e-5, affine=False, subtract_last=False, non_norm=False):
"""
:param num_features: the number of features or channels
:param eps: a value added for numerical stability
:param affine: if True, RevIN has learnable affine parameters
"""
super(Normalize, self).__init__()
self.num_features = num_features
self.eps = eps
self.affine = affine
self.subtract_last = subtract_last
self.non_norm = non_norm
if self.affine:
self._init_params()
def forward(self, x, mode: str):
if mode == 'norm':
self._get_statistics(x)
x = self._normalize(x)
elif mode == 'denorm':
x = self._denormalize(x)
else:
raise NotImplementedError
return x
def _init_params(self):
# initialize RevIN params: (C,)
self.affine_weight = nn.Parameter(torch.ones(self.num_features))
self.affine_bias = nn.Parameter(torch.zeros(self.num_features))
def _get_statistics(self, x):
dim2reduce = tuple(range(1, x.ndim - 1))
if self.subtract_last:
self.last = x[:, -1, :].unsqueeze(1)
else:
self.mean = torch.mean(x, dim=dim2reduce, keepdim=True).detach()
self.stdev = torch.sqrt(torch.var(x, dim=dim2reduce, keepdim=True, unbiased=False) + self.eps).detach()
def _normalize(self, x):
if self.non_norm:
return x
if self.subtract_last:
x = x - self.last
else:
x = x - self.mean
x = x / self.stdev
if self.affine:
x = x * self.affine_weight
x = x + self.affine_bias
return x
def _denormalize(self, x):
if self.non_norm:
return x
if self.affine:
x = x - self.affine_bias
x = x / (self.affine_weight + self.eps * self.eps)
x = x * self.stdev
if self.subtract_last:
x = x + self.last
else:
x = x + self.mean
return x
class MultiLayerPerceptron(nn.Module):
"""Multi-Layer Perceptron with residual links."""
def __init__(self, input_dim, hidden_dim) -> None:
super().__init__()
self.fc1 = nn.Conv2d(
in_channels=input_dim, out_channels=hidden_dim, kernel_size=(1, 1), bias=True)
self.fc2 = nn.Conv2d(
in_channels=hidden_dim, out_channels=hidden_dim, kernel_size=(1, 1), bias=True)
self.act = nn.ReLU()
self.drop = nn.Dropout(p=0.15)
def forward(self, input_data: torch.Tensor) -> torch.Tensor:
"""
input_data (torch.Tensor): input data with shape [B, D, N]
"""
hidden = self.fc2(self.drop(self.act(self.fc1(input_data)))) # MLP
hidden = hidden + input_data # residual
return hidden

View File

@ -22,9 +22,6 @@ class TokenEmbedding(nn.Module):
kernel_size=3, padding=padding, padding_mode='circular', bias=False) kernel_size=3, padding=padding, padding_mode='circular', bias=False)
self.confusion_layer = nn.Linear(patch_num * input_dim, 1) self.confusion_layer = nn.Linear(patch_num * input_dim, 1)
# if air_quality
# self.confusion_layer = nn.Linear(42, 1)
for m in self.modules(): for m in self.modules():
if isinstance(m, nn.Conv1d): if isinstance(m, nn.Conv1d):
@ -59,7 +56,7 @@ class PatchEmbedding(nn.Module):
return self.dropout(x_value_embed), n_vars return self.dropout(x_value_embed), n_vars
class ReprogrammingLayer(nn.Module): class ReprogrammingLayer(nn.Module):
def __init__(self, d_model, n_heads, d_keys=None, d_llm=None, attention_dropout=0.1): def __init__(self, d_model, n_heads, d_keys, d_llm, attention_dropout=0.1):
super(ReprogrammingLayer, self).__init__() super(ReprogrammingLayer, self).__init__()
d_keys = d_keys or (d_model // n_heads) d_keys = d_keys or (d_model // n_heads)

View File

@ -2,7 +2,7 @@ import torch
import torch.nn as nn import torch.nn as nn
from transformers.models.gpt2.modeling_gpt2 import GPT2Model from transformers.models.gpt2.modeling_gpt2 import GPT2Model
from einops import rearrange from einops import rearrange
from model.REPST.normalizer import Normalize, gumbel_softmax from model.REPST.normalizer import gumbel_softmax
from model.REPST.reprogramming import PatchEmbedding, ReprogrammingLayer from model.REPST.reprogramming import PatchEmbedding, ReprogrammingLayer
class repst(nn.Module): class repst(nn.Module):
@ -17,7 +17,7 @@ class repst(nn.Module):
self.stride = configs['stride'] self.stride = configs['stride']
self.dropout = configs['dropout'] self.dropout = configs['dropout']
self.gpt_layers = configs['gpt_layers'] self.gpt_layers = configs['gpt_layers']
self.d_ff = configs['d_ff'] # output mapping dimension self.d_ff = configs['d_ff']
self.gpt_path = configs['gpt_path'] self.gpt_path = configs['gpt_path']
self.d_model = configs['d_model'] self.d_model = configs['d_model']
@ -28,23 +28,17 @@ class repst(nn.Module):
self.patch_nums = int((self.seq_len - self.patch_len) / self.stride + 2) self.patch_nums = int((self.seq_len - self.patch_len) / self.stride + 2)
self.head_nf = self.d_ff * self.patch_nums self.head_nf = self.d_ff * self.patch_nums
# 64,6,7,0.2 # 词嵌入
self.patch_embedding = PatchEmbedding(self.d_model, self.patch_len, self.stride, self.dropout, self.patch_nums, self.input_dim) self.patch_embedding = PatchEmbedding(self.d_model, self.patch_len, self.stride, self.dropout, self.patch_nums, self.input_dim)
# GPT2初始化
self.gpts = GPT2Model.from_pretrained(self.gpt_path, output_attentions=True, output_hidden_states=True) self.gpts = GPT2Model.from_pretrained(self.gpt_path, output_attentions=True, output_hidden_states=True)
self.gpts.h = self.gpts.h[:self.gpt_layers] self.gpts.h = self.gpts.h[:self.gpt_layers]
self.gpts.apply(self.reset_parameters) self.gpts.apply(self.reset_parameters)
self.word_embeddings = self.gpts.get_input_embeddings().weight.to(self.device) self.word_embeddings = self.gpts.get_input_embeddings().weight.to(self.device)
self.vocab_size = self.word_embeddings.shape[0] self.vocab_size = self.word_embeddings.shape[0]
self.num_tokens = 1000
self.n_vars = 5
self.normalize_layers = Normalize(num_features=1, affine=False)
self.mapping_layer = nn.Linear(self.vocab_size, 1) self.mapping_layer = nn.Linear(self.vocab_size, 1)
self.reprogramming_layer = ReprogrammingLayer(self.d_model, self.n_heads, self.d_keys, self.d_llm) self.reprogramming_layer = ReprogrammingLayer(self.d_model, self.n_heads, self.d_keys, self.d_llm)
self.out_mlp = nn.Sequential( self.out_mlp = nn.Sequential(
@ -65,8 +59,6 @@ class repst(nn.Module):
if hasattr(module, 'bias') and module.bias is not None: if hasattr(module, 'bias') and module.bias is not None:
torch.nn.init.zeros_(module.bias) torch.nn.init.zeros_(module.bias)
def forward(self, x): def forward(self, x):
x = x[..., :1] x = x[..., :1]
x_enc = rearrange(x, 'b t n c -> b n c t') x_enc = rearrange(x, 'b t n c -> b n c t')