增加 exp9 混合专家

exp8 动态图manba
This commit is contained in:
czzhangheng 2025-04-17 18:41:57 +08:00
parent c9a5a54d90
commit 86fabd4ca7
8 changed files with 629 additions and 10 deletions

51
config/EXP/PEMSD3.yaml Normal file
View File

@ -0,0 +1,51 @@
data:
num_nodes: 358
lag: 12
horizon: 12
val_ratio: 0.2
test_ratio: 0.2
tod: False
normalizer: std
column_wise: False
default_graph: True
add_time_in_day: True
add_day_in_week: True
steps_per_day: 288
days_per_week: 7
model:
input_dim: 1
output_dim: 1
embed_dim: 10
rnn_units: 64
num_layers: 1
cheb_order: 2
use_day: True
use_week: True
graph_size: 30
expert_nums: 8
top_k: 2
train:
loss_func: mae
seed: 10
batch_size: 64
epochs: 300
lr_init: 0.003
weight_decay: 0
lr_decay: False
lr_decay_rate: 0.3
lr_decay_step: "5,20,40,70"
early_stop: True
early_stop_patience: 15
grad_norm: False
max_grad_norm: 5
real_value: True
test:
mae_thresh: null
mape_thresh: 0.0
log:
log_step: 2000
plot: False

View File

@ -14,17 +14,24 @@ data:
days_per_week: 7
model:
batch_size: 64
input_dim: 1
output_dim: 1
embed_dim: 10
rnn_units: 64
num_layers: 1
cheb_order: 2
use_day: True
use_week: True
graph_size: 30
expert_nums: 8
top_k: 2
in_len: 12
dropout: 0.3
supports: null
gcn_bool: true
addaptadj: true
aptinit: null
in_dim: 2
out_dim: 12
residual_channels: 32
dilation_channels: 32
skip_channels: 256
end_channels: 512
kernel_size: 2
blocks: 4
layers: 2
train:
loss_func: mae

52
config/EXP/SD.yaml Normal file
View File

@ -0,0 +1,52 @@
data:
num_nodes: 716
lag: 12
horizon: 12
val_ratio: 0.2
test_ratio: 0.2
tod: False
normalizer: std
column_wise: False
default_graph: True
add_time_in_day: True
add_day_in_week: True
steps_per_day: 288
days_per_week: 7
model:
input_dim: 1
output_dim: 1
embed_dim: 12
rnn_units: 64
num_layers: 1
cheb_order: 2
use_day: True
use_week: True
graph_size: 30
expert_nums: 8
top_k: 2
hidden_dim: 64
train:
loss_func: mae
seed: 10
batch_size: 64
epochs: 300
lr_init: 0.003
weight_decay: 0
lr_decay: False
lr_decay_rate: 0.3
lr_decay_step: "5,20,40,70"
early_stop: True
early_stop_patience: 15
grad_norm: False
max_grad_norm: 5
real_value: True
test:
mae_thresh: null
mape_thresh: 0.0
log:
log_step: 2000
plot: False

View File

@ -121,6 +121,9 @@ def load_st_dataset(dataset, sample):
case 'Hainan':
data_path = os.path.join('./data/Hainan/Hainan.npz')
data = np.load(data_path)['data'][:, :, 0]
case 'SD':
data_path = os.path.join('./data/SD/data.npz')
data = np.load(data_path)["data"][:, :, 0].astype(np.float32)
case _:
raise ValueError(f"Unsupported dataset: {dataset}")
@ -204,3 +207,6 @@ def add_window_y(data, window=3, horizon=1, single=False):
return np.array(y)
if __name__ == '__main__':
res = load_st_dataset('SD', 1)
k = 1

267
lib/LargeST.py Normal file
View File

@ -0,0 +1,267 @@
import pickle
import torch
import numpy as np
import os
import gc
# ! X shape: (B, T, N, C)
def load_pkl(pickle_file: str) -> object:
"""
Load data from a pickle file.
Args:
pickle_file (str): Path to the pickle file.
Returns:
object: Loaded object from the pickle file.
"""
try:
with open(pickle_file, "rb") as f:
pickle_data = pickle.load(f)
except UnicodeDecodeError:
with open(pickle_file, "rb") as f:
pickle_data = pickle.load(f, encoding="latin1")
except Exception as e:
print(f"Unable to load data from {pickle_file}: {e}")
raise
return pickle_data
def get_dataloaders_from_index_data(
data_dir, tod=False, dow=False, batch_size=64, log=None, train_size=0.6
):
data = np.load(os.path.join(data_dir, "data.npz"))["data"].astype(np.float32)
features = [0]
if tod:
features.append(1)
if dow:
features.append(2)
# if dom:
# features.append(3)
data = data[..., features]
index = np.load(os.path.join(data_dir, "index.npz"))
train_index = index["train"] # (num_samples, 3)
val_index = index["val"]
test_index = index["test"]
x_train_index = vrange(train_index[:, 0], train_index[:, 1])
y_train_index = vrange(train_index[:, 1], train_index[:, 2])
x_val_index = vrange(val_index[:, 0], val_index[:, 1])
y_val_index = vrange(val_index[:, 1], val_index[:, 2])
x_test_index = vrange(test_index[:, 0], test_index[:, 1])
y_test_index = vrange(test_index[:, 1], test_index[:, 2])
x_train = data[x_train_index]
y_train = data[y_train_index][..., :1]
x_val = data[x_val_index]
y_val = data[y_val_index][..., :1]
x_test = data[x_test_index]
y_test = data[y_test_index][..., :1]
scaler = StandardScaler(mean=x_train[..., 0].mean(), std=x_train[..., 0].std())
x_train[..., 0] = scaler.transform(x_train[..., 0])
x_val[..., 0] = scaler.transform(x_val[..., 0])
x_test[..., 0] = scaler.transform(x_test[..., 0])
print_log(f"Trainset:\tx-{x_train.shape}\ty-{y_train.shape}", log=log)
print_log(f"Valset: \tx-{x_val.shape} \ty-{y_val.shape}", log=log)
print_log(f"Testset:\tx-{x_test.shape}\ty-{y_test.shape}", log=log)
trainset = torch.utils.data.TensorDataset(
torch.FloatTensor(x_train), torch.FloatTensor(y_train)
)
valset = torch.utils.data.TensorDataset(
torch.FloatTensor(x_val), torch.FloatTensor(y_val)
)
testset = torch.utils.data.TensorDataset(
torch.FloatTensor(x_test), torch.FloatTensor(y_test)
)
if train_size != 0.6:
drop_last=True
else:
drop_last=False
trainset_loader = torch.utils.data.DataLoader(
trainset, batch_size=batch_size, shuffle=True, drop_last=drop_last
)
valset_loader = torch.utils.data.DataLoader(
valset, batch_size=batch_size, shuffle=False, drop_last=drop_last
)
testset_loader = torch.utils.data.DataLoader(
testset, batch_size=batch_size, shuffle=False, drop_last=drop_last
)
return trainset_loader, valset_loader, testset_loader, scaler
def get_dataloaders_from_index_data_MTS(
data_dir,
in_steps=12,
out_steps=12,
tod=False,
dow=False,
y_tod=False,
y_dow=False,
batch_size=64,
log=None,
):
data = np.load(os.path.join(data_dir, f"data.npz"))["data"].astype(np.float32)
index = np.load(os.path.join(data_dir, f"index_{in_steps}_{out_steps}.npz"))
x_features = [0]
if tod:
x_features.append(1)
if dow:
x_features.append(2)
y_features = [0]
if y_tod:
y_features.append(1)
if y_dow:
y_features.append(2)
train_index = index["train"] # (num_samples, 3)
val_index = index["val"]
test_index = index["test"]
# Parallel
# x_train_index = vrange(train_index[:, 0], train_index[:, 1])
# y_train_index = vrange(train_index[:, 1], train_index[:, 2])
# x_val_index = vrange(val_index[:, 0], val_index[:, 1])
# y_val_index = vrange(val_index[:, 1], val_index[:, 2])
# x_test_index = vrange(test_index[:, 0], test_index[:, 1])
# y_test_index = vrange(test_index[:, 1], test_index[:, 2])
# x_train = data[x_train_index][..., x_features]
# y_train = data[y_train_index][..., y_features]
# x_val = data[x_val_index][..., x_features]
# y_val = data[y_val_index][..., y_features]
# x_test = data[x_test_index][..., x_features]
# y_test = data[y_test_index][..., y_features]
# Iterative
x_train = np.stack([data[idx[0] : idx[1]] for idx in train_index])[..., x_features]
y_train = np.stack([data[idx[1] : idx[2]] for idx in train_index])[..., y_features]
x_val = np.stack([data[idx[0] : idx[1]] for idx in val_index])[..., x_features]
y_val = np.stack([data[idx[1] : idx[2]] for idx in val_index])[..., y_features]
x_test = np.stack([data[idx[0] : idx[1]] for idx in test_index])[..., x_features]
y_test = np.stack([data[idx[1] : idx[2]] for idx in test_index])[..., y_features]
scaler = StandardScaler(mean=x_train[..., 0].mean(), std=x_train[..., 0].std())
x_train[..., 0] = scaler.transform(x_train[..., 0])
x_val[..., 0] = scaler.transform(x_val[..., 0])
x_test[..., 0] = scaler.transform(x_test[..., 0])
print_log(f"Trainset:\tx-{x_train.shape}\ty-{y_train.shape}", log=log)
print_log(f"Valset: \tx-{x_val.shape} \ty-{y_val.shape}", log=log)
print_log(f"Testset:\tx-{x_test.shape}\ty-{y_test.shape}", log=log)
trainset = torch.utils.data.TensorDataset(
torch.FloatTensor(x_train), torch.FloatTensor(y_train)
)
valset = torch.utils.data.TensorDataset(
torch.FloatTensor(x_val), torch.FloatTensor(y_val)
)
testset = torch.utils.data.TensorDataset(
torch.FloatTensor(x_test), torch.FloatTensor(y_test)
)
trainset_loader = torch.utils.data.DataLoader(
trainset, batch_size=batch_size, shuffle=True
)
valset_loader = torch.utils.data.DataLoader(
valset, batch_size=batch_size, shuffle=False
)
testset_loader = torch.utils.data.DataLoader(
testset, batch_size=batch_size, shuffle=False
)
return trainset_loader, valset_loader, testset_loader, scaler
def get_dataloaders_from_index_data_Test(
data_dir,
in_steps=12,
out_steps=12,
tod=False,
dow=False,
y_tod=False,
y_dow=False,
batch_size=64,
log=None,
):
data = np.load(os.path.join(data_dir, f"data.npz"))["data"].astype(np.float32)
index = np.load(os.path.join(data_dir, f"index_{in_steps}_{out_steps}.npz"))
x_features = [0]
if tod:
x_features.append(1)
if dow:
x_features.append(2)
y_features = [0]
if y_tod:
y_features.append(1)
if y_dow:
y_features.append(2)
train_index = index["train"] # (num_samples, 3)
# val_index = index["val"]
test_index = index["test"]
# Parallel
# x_train_index = vrange(train_index[:, 0], train_index[:, 1])
# y_train_index = vrange(train_index[:, 1], train_index[:, 2])
# x_val_index = vrange(val_index[:, 0], val_index[:, 1])
# y_val_index = vrange(val_index[:, 1], val_index[:, 2])
# x_test_index = vrange(test_index[:, 0], test_index[:, 1])
# y_test_index = vrange(test_index[:, 1], test_index[:, 2])
# x_train = data[x_train_index][..., x_features]
# y_train = data[y_train_index][..., y_features]
# x_val = data[x_val_index][..., x_features]
# y_val = data[y_val_index][..., y_features]
# x_test = data[x_test_index][..., x_features]
# y_test = data[y_test_index][..., y_features]
# Iterative
x_train = np.stack([data[idx[0] : idx[1]] for idx in train_index])[..., x_features]
# y_train = np.stack([data[idx[1] : idx[2]] for idx in train_index])[..., y_features]
# x_val = np.stack([data[idx[0] : idx[1]] for idx in val_index])[..., x_features]
# y_val = np.stack([data[idx[1] : idx[2]] for idx in val_index])[..., y_features]
x_test = np.stack([data[idx[0] : idx[1]] for idx in test_index])[..., x_features]
y_test = np.stack([data[idx[1] : idx[2]] for idx in test_index])[..., y_features]
scaler = StandardScaler(mean=x_train[..., 0].mean(), std=x_train[..., 0].std())
# x_train[..., 0] = scaler.transform(x_train[..., 0])
# x_val[..., 0] = scaler.transform(x_val[..., 0])
x_test[..., 0] = scaler.transform(x_test[..., 0])
# print_log(f"Trainset:\tx-{x_train.shape}\ty-{y_train.shape}", log=log)
# print_log(f"Valset: \tx-{x_val.shape} \ty-{y_val.shape}", log=log)
print_log(f"Testset:\tx-{x_test.shape}\ty-{y_test.shape}", log=log)
# trainset = torch.utils.data.TensorDataset(
# torch.FloatTensor(x_train), torch.FloatTensor(y_train)
# )
# valset = torch.utils.data.TensorDataset(
# torch.FloatTensor(x_val), torch.FloatTensor(y_val)
# )
testset = torch.utils.data.TensorDataset(
torch.FloatTensor(x_test), torch.FloatTensor(y_test)
)
# trainset_loader = torch.utils.data.DataLoader(
# trainset, batch_size=batch_size, shuffle=True
# )
# valset_loader = torch.utils.data.DataLoader(
# valset, batch_size=batch_size, shuffle=False
# )
testset_loader = torch.utils.data.DataLoader(
testset, batch_size=batch_size, shuffle=False
)
return testset_loader, scaler

115
model/EXP/EXP8.py Normal file
View File

@ -0,0 +1,115 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
class DynamicGraphConstructor(nn.Module):
def __init__(self, node_num, embed_dim):
super().__init__()
self.nodevec1 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True)
self.nodevec2 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True)
def forward(self):
# (N, D) @ (D, N) -> (N, N)
adj = torch.matmul(self.nodevec1, self.nodevec2.T)
adj = F.relu(adj)
adj = F.softmax(adj, dim=-1)
return adj
class GraphConvBlock(nn.Module):
def __init__(self, input_dim, output_dim):
super().__init__()
self.theta = nn.Linear(input_dim, output_dim)
self.residual = input_dim == output_dim
if not self.residual:
self.res_proj = nn.Linear(input_dim, output_dim)
def forward(self, x, adj):
# x: (B, N, C) / adj: (N, N)
res = x
x = torch.matmul(adj, x) # (B, N, C)
x = self.theta(x)
# 残差连接
if self.residual:
x = x + res
else:
x = x + self.res_proj(res)
return F.relu(x)
class MANBA_Block(nn.Module):
def __init__(self, input_dim, hidden_dim):
super().__init__()
self.attn = nn.MultiheadAttention(embed_dim=input_dim, num_heads=4, batch_first=True)
self.ffn = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, input_dim)
)
self.norm1 = nn.LayerNorm(input_dim)
self.norm2 = nn.LayerNorm(input_dim)
def forward(self, x):
# x: (B, T, C)
res = x
x_attn, _ = self.attn(x, x, x)
x = self.norm1(res + x_attn)
res2 = x
x_ffn = self.ffn(x)
x = self.norm2(res2 + x_ffn)
return x
class EXP(nn.Module):
def __init__(self, args):
super().__init__()
self.horizon = args['horizon']
self.output_dim = args['output_dim']
self.seq_len = args.get('in_len', 12)
self.hidden_dim = args.get('hidden_dim', 64)
self.num_nodes = args['num_nodes']
# 动态图构建
self.graph = DynamicGraphConstructor(self.num_nodes, embed_dim=16)
# 输入映射层
self.input_proj = nn.Linear(self.seq_len, self.hidden_dim)
# 图卷积
self.gc = GraphConvBlock(self.hidden_dim, self.hidden_dim)
# MANBA block
self.manba = MANBA_Block(self.hidden_dim, self.hidden_dim * 2)
# 输出映射
self.out_proj = nn.Linear(self.hidden_dim, self.horizon * self.output_dim)
def forward(self, x):
# x: (B, T, N, D_total)
x = x[..., 0] # 只用主通道 (B, T, N)
B, T, N = x.shape
assert T == self.seq_len
# 输入投影 (B, T, N) -> (B, N, T) -> (B*N, T) -> (B*N, H)
x = x.permute(0, 2, 1).reshape(B * N, T)
h = self.input_proj(x) # (B*N, hidden_dim)
h = h.view(B, N, self.hidden_dim)
# 动态图构建
adj = self.graph() # (N, N)
# 空间建模:图卷积
h = self.gc(h, adj) # (B, N, hidden_dim)
# 时间建模MANBA
h = self.manba(h) # (B, N, hidden_dim)
# 输出映射
out = self.out_proj(h) # (B, N, horizon * output_dim)
out = out.view(B, N, self.horizon, self.output_dim).permute(0, 2, 1, 3)
return out # (B, horizon, N, output_dim)

121
model/EXP/EXP9.py Normal file
View File

@ -0,0 +1,121 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
class DynamicGraphConstructor(nn.Module):
def __init__(self, node_num, embed_dim):
super().__init__()
self.nodevec1 = nn.Parameter(torch.randn(node_num, embed_dim))
self.nodevec2 = nn.Parameter(torch.randn(node_num, embed_dim))
def forward(self):
adj = torch.matmul(self.nodevec1, self.nodevec2.T)
adj = F.relu(adj)
adj = F.softmax(adj, dim=-1)
return adj
class GraphConvBlock(nn.Module):
def __init__(self, input_dim, output_dim):
super().__init__()
self.theta = nn.Linear(input_dim, output_dim)
self.residual = input_dim == output_dim
if not self.residual:
self.res_proj = nn.Linear(input_dim, output_dim)
def forward(self, x, adj):
res = x
x = torch.matmul(adj, x)
x = self.theta(x)
if self.residual:
x = x + res
else:
x = x + self.res_proj(res)
return F.relu(x)
class MANBA_Block(nn.Module):
def __init__(self, input_dim, hidden_dim):
super().__init__()
self.attn = nn.MultiheadAttention(embed_dim=input_dim, num_heads=4, batch_first=True)
self.ffn = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, input_dim)
)
self.norm1 = nn.LayerNorm(input_dim)
self.norm2 = nn.LayerNorm(input_dim)
def forward(self, x):
res = x
x_attn, _ = self.attn(x, x, x)
x = self.norm1(res + x_attn)
res2 = x
x_ffn = self.ffn(x)
x = self.norm2(res2 + x_ffn)
return x
class EXPExpert(nn.Module): # 原 EXP 改名
def __init__(self, args):
super().__init__()
self.horizon = args['horizon']
self.output_dim = args['output_dim']
self.seq_len = args.get('in_len', 12)
self.hidden_dim = args.get('hidden_dim', 64)
self.num_nodes = args['num_nodes']
self.graph = DynamicGraphConstructor(self.num_nodes, embed_dim=16)
self.input_proj = nn.Linear(self.seq_len, self.hidden_dim)
self.gc = GraphConvBlock(self.hidden_dim, self.hidden_dim)
self.manba = MANBA_Block(self.hidden_dim, self.hidden_dim * 2)
self.out_proj = nn.Linear(self.hidden_dim, self.horizon * self.output_dim)
def forward(self, x):
x = x[..., 0] # (B, T, N)
B, T, N = x.shape
x = x.permute(0, 2, 1).reshape(B * N, T)
h = self.input_proj(x).view(B, N, -1)
adj = self.graph()
h = self.gc(h, adj)
h = self.manba(h)
out = self.out_proj(h)
return out.view(B, N, self.horizon, self.output_dim).permute(0, 2, 1, 3)
class EXP(nn.Module):
def __init__(self, args, num_experts=4, top_k=2):
super().__init__()
self.num_experts = num_experts
self.top_k = top_k
self.experts = nn.ModuleList([EXPExpert(args) for _ in range(num_experts)])
self.gate = nn.Sequential(
nn.Linear(args['in_len'] * args['num_nodes'], 128),
nn.ReLU(),
nn.Linear(128, num_experts)
)
def forward(self, x):
B = x.size(0)
# Flatten input for gating
gate_input = x[..., 0].reshape(B, -1) # (B, T*N)
gate_logits = self.gate(gate_input) # (B, num_experts)
gate_scores = F.softmax(gate_logits, dim=-1) # soft selection
# Get top-k experts
topk_val, topk_idx = torch.topk(gate_scores, self.top_k, dim=-1) # (B, k)
outputs = torch.zeros_like(self.experts[0](x)) # (B, H, N, D_out)
for i in range(self.top_k):
idx = topk_idx[:, i]
for expert_id in torch.unique(idx):
mask = idx == expert_id
if mask.sum() == 0:
continue
selected_x = x[mask]
expert_output = self.experts[expert_id](selected_x)
outputs[mask] += topk_val[mask, i].unsqueeze(1).unsqueeze(1).unsqueeze(1) * expert_output
return outputs # (B, H, N, D_out)

View File

@ -13,7 +13,7 @@ from model.STFGNN.STFGNN import STFGNN
from model.STSGCN.STSGCN import STSGCN
from model.STGODE.STGODE import ODEGCN
from model.PDG2SEQ.PDG2Seq import PDG2Seq
from model.EXP.EXP7 import EXP as EXP
from model.EXP.EXP9 import EXP as EXP
def model_selector(model):
match model['type']: