优化trainer和run

This commit is contained in:
czzhangheng 2025-11-18 10:01:01 +08:00
parent dceae4b1a3
commit 8b7e13df30
8 changed files with 208 additions and 179 deletions

View File

@ -1,5 +1,5 @@
{
"python-envs.defaultEnvManager": "ms-python.python:conda",
"python-envs.defaultPackageManager": "ms-python.python:conda",
"python-envs.defaultEnvManager": "ms-python.python:system",
"python-envs.defaultPackageManager": "ms-python.python:pip",
"python-envs.pythonProjects": []
}

View File

@ -3,6 +3,7 @@ basic:
mode : "train"
device : "cuda:1"
model: "REPST"
seed: 2023
data:
add_day_in_week: true
@ -49,7 +50,6 @@ train:
lr_init: 0.003
max_grad_norm: 5
real_value: true
seed: 12
weight_decay: 0
debug: false
output_dim: 1

View File

@ -2,112 +2,88 @@ from utils.normalization import normalize_dataset
from dataloader.data_selector import load_st_dataset
import numpy as np
import gc
import torch
def get_dataloader(args, normalizer="std", single=True):
data = load_st_dataset(args) # 加载数据
data = load_st_dataset(args)
args = args["data"]
L, N, F = data.shape # 数据形状
L, N, F = data.shape
# Step 1: data -> x,y
# Generate sliding windows for main data and add time features
x, y = _prepare_data_with_windows(data, args, single)
# Split data
split_fn = split_data_by_days if args["test_ratio"] > 1 else split_data_by_ratio
x_train, x_val, x_test = split_fn(x, args["val_ratio"], args["test_ratio"])
y_train, y_val, y_test = split_fn(y, args["val_ratio"], args["test_ratio"])
# Normalize x and y using the same scaler
scaler = _normalize_data(x_train, x_val, x_test, args, normalizer)
_apply_existing_scaler(y_train, y_val, y_test, scaler, args)
# Create dataloaders
return (
_create_dataloader(x_train, y_train, args["batch_size"], True, False),
_create_dataloader(x_val, y_val, args["batch_size"], False, False),
_create_dataloader(x_test, y_test, args["batch_size"], False, False),
scaler
)
def _prepare_data_with_windows(data, args, single):
# Generate sliding windows for main data
x = add_window_x(data, args["lag"], args["horizon"], single)
y = add_window_y(data, args["lag"], args["horizon"], single)
del data
gc.collect()
# Generate time features
time_features = _generate_time_features(data.shape[0], args)
# Step 2: time_in_day, day_in_week -> day, week
# Add time features to x and y
x = _add_time_features(x, time_features, args["lag"], args["horizon"], single, add_window_x)
y = _add_time_features(y, time_features, args["lag"], args["horizon"], single, add_window_y)
return x, y
def _generate_time_features(L, args):
N = args["num_nodes"]
time_in_day = [i % args["steps_per_day"] / args["steps_per_day"] for i in range(L)]
time_in_day = np.tile(np.array(time_in_day), [1, N, 1]).transpose((2, 1, 0))
day_in_week = [
(i // args["steps_per_day"]) % args["days_per_week"] for i in range(L)
]
day_in_week = [(i // args["steps_per_day"]) % args["days_per_week"] for i in range(L)]
day_in_week = np.tile(np.array(day_in_week), [1, N, 1]).transpose((2, 1, 0))
x_day = add_window_x(time_in_day, args["lag"], args["horizon"], single)
x_week = add_window_x(day_in_week, args["lag"], args["horizon"], single)
return time_in_day, day_in_week
# Step 3 day, week, x, y --> x, y
x = np.concatenate([x, x_day, x_week], axis=-1)
del x_day, x_week
gc.collect()
def _add_time_features(data, time_features, lag, horizon, single, window_fn):
time_in_day, day_in_week = time_features
time_day = window_fn(time_in_day, lag, horizon, single)
time_week = window_fn(day_in_week, lag, horizon, single)
return np.concatenate([data, time_day, time_week], axis=-1)
# Step 4 x,y --> x_train, x_val, x_test, y_train, y_val, y_test
if args["test_ratio"] > 1:
x_train, x_val, x_test = split_data_by_days(
x, args["val_ratio"], args["test_ratio"]
)
else:
x_train, x_val, x_test = split_data_by_ratio(
x, args["val_ratio"], args["test_ratio"]
)
del x
gc.collect()
def _normalize_data(train_data, val_data, test_data, args, normalizer):
scaler = normalize_dataset(train_data[..., : args["input_dim"]], normalizer, args["column_wise"])
# Normalization
scaler = normalize_dataset(
x_train[..., : args["input_dim"]], normalizer, args["column_wise"]
)
x_train[..., : args["input_dim"]] = scaler.transform(
x_train[..., : args["input_dim"]]
)
x_val[..., : args["input_dim"]] = scaler.transform(x_val[..., : args["input_dim"]])
x_test[..., : args["input_dim"]] = scaler.transform(
x_test[..., : args["input_dim"]]
)
for data in [train_data, val_data, test_data]:
data[..., : args["input_dim"]] = scaler.transform(data[..., : args["input_dim"]])
y_day = add_window_y(time_in_day, args["lag"], args["horizon"], single)
y_week = add_window_y(day_in_week, args["lag"], args["horizon"], single)
return scaler
del time_in_day, day_in_week
gc.collect()
y = np.concatenate([y, y_day, y_week], axis=-1)
def _apply_existing_scaler(train_data, val_data, test_data, scaler, args):
for data in [train_data, val_data, test_data]:
data[..., : args["input_dim"]] = scaler.transform(data[..., : args["input_dim"]])
del y_day, y_week
gc.collect()
# Split Y
if args["test_ratio"] > 1:
y_train, y_val, y_test = split_data_by_days(
y, args["val_ratio"], args["test_ratio"]
)
else:
y_train, y_val, y_test = split_data_by_ratio(
y, args["val_ratio"], args["test_ratio"]
)
del y
gc.collect()
# Step 5: x_train y_train x_val y_val x_test y_test --> train val test
train_dataloader = data_loader(
x_train, y_train, args["batch_size"], shuffle=True, drop_last=True
)
del x_train, y_train
gc.collect()
val_dataloader = data_loader(
x_val, y_val, args["batch_size"], shuffle=False, drop_last=True
)
del x_val, y_val
gc.collect()
test_dataloader = data_loader(
x_test, y_test, args["batch_size"], shuffle=False, drop_last=False
)
del x_test, y_test
gc.collect()
return train_dataloader, val_dataloader, test_dataloader, scaler
def _create_dataloader(X_data, Y_data, batch_size, shuffle, drop_last):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
X_tensor = torch.tensor(X_data, dtype=torch.float32, device=device)
Y_tensor = torch.tensor(Y_data, dtype=torch.float32, device=device)
dataset = torch.utils.data.TensorDataset(X_tensor, Y_tensor)
return torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last)
def split_data_by_days(data, val_days, test_days, interval=30):
@ -128,17 +104,29 @@ def split_data_by_ratio(data, val_ratio, test_ratio):
return train_data, val_data, test_data
def data_loader(X, Y, batch_size, shuffle=True, drop_last=True):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
X = torch.tensor(X, dtype=torch.float32, device=device)
Y = torch.tensor(Y, dtype=torch.float32, device=device)
data = torch.utils.data.TensorDataset(X, Y)
dataloader = torch.utils.data.DataLoader(
data, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last
)
return dataloader
def _generate_windows(data, window=3, horizon=1, offset=0):
"""
Internal helper function to generate sliding windows.
:param data: Input data
:param window: Window size
:param horizon: Horizon size
:param offset: Offset from window start
:return: Windowed data
"""
length = len(data)
end_index = length - horizon - window + 1
windows = []
index = 0
while index < end_index:
windows.append(data[index + offset : index + offset + window])
index += 1
return np.array(windows)
def add_window_x(data, window=3, horizon=1, single=False):
"""
Generate windowed X values from the input data.
@ -149,17 +137,7 @@ def add_window_x(data, window=3, horizon=1, single=False):
:param single: If True, generate single-step windows, else multi-step
:return: X with shape [B, W, ...]
"""
length = len(data)
end_index = length - horizon - window + 1
x = [] # Sliding windows
index = 0
while index < end_index:
x.append(data[index : index + window])
index += 1
return np.array(x)
return _generate_windows(data, window, horizon, offset=0)
def add_window_y(data, window=3, horizon=1, single=False):
"""
@ -171,21 +149,10 @@ def add_window_y(data, window=3, horizon=1, single=False):
:param single: If True, generate single-step windows, else multi-step
:return: Y with shape [B, H, ...]
"""
length = len(data)
end_index = length - horizon - window + 1
y = [] # Horizon values
index = 0
while index < end_index:
if single:
y.append(data[index + window + horizon - 1 : index + window + horizon])
else:
y.append(data[index + window : index + window + horizon])
index += 1
return np.array(y)
offset = window if not single else window + horizon - 1
return _generate_windows(data, window=1 if single else horizon, horizon=horizon, offset=offset)
if __name__ == "__main__":
res = load_st_dataset("SD", 1)
k = 1
from dataloader.data_selector import load_st_dataset
res = load_st_dataset({"dataset": "SD"})
print(f"Dataset shape: {res.shape}")

View File

@ -1,4 +1,3 @@
from tkinter import Y
import torch
import torch.nn as nn
from transformers.models.gpt2.modeling_gpt2 import GPT2Model

View File

@ -30,7 +30,6 @@ class TokenEmbedding(nn.Module):
def forward(self, x):
b, n, m, pn, pl = x.shape # batch, node, feature, patch_num, patch_len
# 为什么没permute后reshape?
x = x.permute(0, 1, 4, 3, 2)
x = self.tokenConv(x.reshape(b*n, pl, m*pn)) # batch*node, patch_len, feature*patch_num
x = self.confusion_layer(x)

View File

@ -1,4 +1,3 @@
from tkinter import Y
import torch
import torch.nn as nn
from transformers.models.gpt2.modeling_gpt2 import GPT2Model

2
run.py
View File

@ -13,7 +13,7 @@ from trainer.trainer_selector import select_trainer
def main():
args = parse_args()
args = init.init_device(args)
init.init_seed(args["train"]["seed"])
init.init_seed(args["basic"]["seed"])
model = init.init_model(args)
# Load dataset

View File

@ -10,11 +10,14 @@ from tqdm import tqdm
class TrainingStats:
"""记录训练过程中的统计信息"""
def __init__(self, device):
self.device = device
self.reset()
def reset(self):
"""重置所有统计数据"""
self.gpu_mem_usage_list = []
self.cpu_mem_usage_list = []
self.train_time_list = []
@ -24,9 +27,11 @@ class TrainingStats:
self.end_time = None
def start_training(self):
"""记录训练开始时间"""
self.start_time = time.time()
def end_training(self):
"""记录训练结束时间"""
self.end_time = time.time()
def record_step_time(self, duration, mode):
@ -51,6 +56,10 @@ class TrainingStats:
self.cpu_mem_usage_list.append(cpu_mem)
self.gpu_mem_usage_list.append(gpu_mem)
def _calculate_average(self, values_list):
"""安全计算平均值,避免除零错误"""
return sum(values_list) / len(values_list) if values_list else 0
def report(self, logger):
"""在训练结束时输出汇总统计"""
if not self.start_time or not self.end_time:
@ -58,26 +67,10 @@ class TrainingStats:
return
total_time = self.end_time - self.start_time
avg_gpu_mem = (
sum(self.gpu_mem_usage_list) / len(self.gpu_mem_usage_list)
if self.gpu_mem_usage_list
else 0
)
avg_cpu_mem = (
sum(self.cpu_mem_usage_list) / len(self.cpu_mem_usage_list)
if self.cpu_mem_usage_list
else 0
)
avg_train_time = (
sum(self.train_time_list) / len(self.train_time_list)
if self.train_time_list
else 0
)
avg_infer_time = (
sum(self.infer_time_list) / len(self.infer_time_list)
if self.infer_time_list
else 0
)
avg_gpu_mem = self._calculate_average(self.gpu_mem_usage_list)
avg_cpu_mem = self._calculate_average(self.cpu_mem_usage_list)
avg_train_time = self._calculate_average(self.train_time_list)
avg_infer_time = self._calculate_average(self.infer_time_list)
iters_per_sec = self.total_iters / total_time if total_time > 0 else 0
logger.info("===== Training Summary =====")
@ -93,6 +86,8 @@ class TrainingStats:
class Trainer:
"""模型训练器,负责整个训练流程的管理"""
def __init__(
self,
model,
@ -105,26 +100,42 @@ class Trainer:
args,
lr_scheduler=None,
):
# 设备和基本参数
self.device = args["basic"]["device"]
args = args["train"]
train_args = args["train"]
# 模型和训练相关组件
self.model = model
self.loss = loss
self.optimizer = optimizer
self.lr_scheduler = lr_scheduler
# 数据加载器
self.train_loader = train_loader
self.val_loader = val_loader
self.test_loader = test_loader
# 数据处理工具
self.scaler = scaler
self.args = args
self.lr_scheduler = lr_scheduler
self.args = train_args
# 统计信息
self.train_per_epoch = len(train_loader)
self.val_per_epoch = len(val_loader) if val_loader else 0
# Paths for saving models and logs
# 初始化路径、日志和统计
self._initialize_paths(train_args)
self._initialize_logger(train_args)
self._initialize_stats()
def _initialize_paths(self, args):
"""初始化模型保存路径"""
self.best_path = os.path.join(args["log_dir"], "best_model.pth")
self.best_test_path = os.path.join(args["log_dir"], "best_test_model.pth")
self.loss_figure_path = os.path.join(args["log_dir"], "loss.png")
# Initialize logger
def _initialize_logger(self, args):
"""初始化日志记录器"""
if not os.path.isdir(args["log_dir"]) and not args["debug"]:
os.makedirs(args["log_dir"], exist_ok=True)
self.logger = get_logger(
@ -132,10 +143,13 @@ class Trainer:
)
self.logger.info(f"Experiment log path in: {args['log_dir']}")
# Stats tracker
def _initialize_stats(self):
"""初始化统计信息记录器"""
self.stats = TrainingStats(device=self.device)
def _run_epoch(self, epoch, dataloader, mode):
"""运行一个训练/验证/测试epoch"""
# 设置模型模式和是否进行优化
if mode == "train":
self.model.train()
optimizer_step = True
@ -143,48 +157,64 @@ class Trainer:
self.model.eval()
optimizer_step = False
# 初始化变量
total_loss = 0
epoch_time = time.time()
y_pred, y_true = [], []
# 训练/验证循环
with torch.set_grad_enabled(optimizer_step):
progress_bar = tqdm(enumerate(dataloader), total=len(dataloader), desc=f"{mode.capitalize()} Epoch {epoch}")
for batch_idx, (data, target) in progress_bar:
progress_bar = tqdm(
enumerate(dataloader),
total=len(dataloader),
desc=f"{mode.capitalize()} Epoch {epoch}"
)
for _, (data, target) in progress_bar:
# 记录步骤开始时间
start_time = time.time()
# 前向传播
label = target[..., : self.args["output_dim"]]
output = self.model(data).to(self.device)
if self.args["real_value"]:
output = self.scaler.inverse_transform(output)
loss = self.loss(output, label)
# 反归一化
self.scaler.inverse_transform(output)
self.scaler.inverse_transform(label)
# 反向传播和优化(仅在训练模式)
if optimizer_step and self.optimizer is not None:
self.optimizer.zero_grad()
loss.backward()
# 梯度裁剪(如果需要)
if self.args["grad_norm"]:
torch.nn.utils.clip_grad_norm_(
self.model.parameters(), self.args["max_grad_norm"]
)
self.optimizer.step()
# 记录步骤时间和内存使用
step_time = time.time() - start_time
self.stats.record_step_time(step_time, mode)
# 累积损失和预测结果
total_loss += loss.item()
y_pred.append(output.detach().cpu())
y_true.append(label.detach().cpu())
# Update progress bar with the current loss
# 更新进度条
progress_bar.set_postfix(loss=loss.item())
# 合并所有批次的预测结果
y_pred = torch.cat(y_pred, dim=0)
y_true = torch.cat(y_true, dim=0)
# 计算平均损失
avg_loss = total_loss / len(dataloader)
# 输出指标
# 计算并记录指标
mae, rmse, mape = all_metrics(
y_pred, y_true, self.args["mae_thresh"], self.args["mape_thresh"]
)
@ -192,7 +222,7 @@ class Trainer:
f"Epoch #{epoch:02d}: {mode.capitalize():<5} MAE:{mae:5.2f} | RMSE:{rmse:5.2f} | MAPE:{mape:7.4f} | Time: {time.time() - epoch_time:.2f} s"
)
# 记录内存
# 记录内存使用情况
self.stats.record_memory_usage()
return avg_loss
@ -207,22 +237,29 @@ class Trainer:
return self._run_epoch(epoch, self.test_loader, "test")
def train(self):
"""执行完整的训练流程"""
# 初始化最佳模型和损失记录
best_model, best_test_model = None, None
best_loss, best_test_loss = float("inf"), float("inf")
not_improved_count = 0
# 开始训练
self.stats.start_training()
self.logger.info("Training process started")
# 训练循环
for epoch in range(1, self.args["epochs"] + 1):
# 训练、验证和测试一个epoch
train_epoch_loss = self.train_epoch(epoch)
val_epoch_loss = self.val_epoch(epoch)
test_epoch_loss = self.test_epoch(epoch)
# 检查梯度爆炸
if train_epoch_loss > 1e6:
self.logger.warning("Gradient explosion detected. Ending...")
break
# 更新最佳验证模型
if val_epoch_loss < best_loss:
best_loss = val_epoch_loss
not_improved_count = 0
@ -231,32 +268,51 @@ class Trainer:
else:
not_improved_count += 1
if (
self.args["early_stop"]
and not_improved_count == self.args["early_stop_patience"]
):
self.logger.info(
f"Validation performance didn't improve for {self.args['early_stop_patience']} epochs. Training stops."
)
# 检查早停条件
if self._should_early_stop(not_improved_count):
break
# 更新最佳测试模型
if test_epoch_loss < best_test_loss:
best_test_loss = test_epoch_loss
best_test_model = copy.deepcopy(self.model.state_dict())
# 保存最佳模型
if not self.args["debug"]:
torch.save(best_model, self.best_path)
torch.save(best_test_model, self.best_test_path)
self.logger.info(
f"Best models saved at {self.best_path} and {self.best_test_path}"
)
self._save_best_models(best_model, best_test_model)
# 结束训练并输出统计信息
self.stats.end_training()
self.stats.report(self.logger)
# 最终评估
self._finalize_training(best_model, best_test_model)
# 输出参数量
# 输出模型参数量
self._log_model_params()
def _should_early_stop(self, not_improved_count):
"""检查是否满足早停条件"""
if (
self.args["early_stop"]
and not_improved_count == self.args["early_stop_patience"]
):
self.logger.info(
f"Validation performance didn't improve for {self.args['early_stop_patience']} epochs. Training stops."
)
return True
return False
def _save_best_models(self, best_model, best_test_model):
"""保存最佳模型到文件"""
torch.save(best_model, self.best_path)
torch.save(best_test_model, self.best_test_path)
self.logger.info(
f"Best models saved at {self.best_path} and {self.best_test_path}"
)
def _log_model_params(self):
"""输出模型可训练参数数量"""
try:
total_params = sum(
p.numel() for p in self.model.parameters() if p.requires_grad
@ -276,14 +332,20 @@ class Trainer:
@staticmethod
def test(model, args, data_loader, scaler, logger, path=None):
"""对模型进行评估并输出性能指标"""
# 加载模型检查点(如果提供了路径)
if path:
checkpoint = torch.load(path)
model.load_state_dict(checkpoint["state_dict"])
model.to(args["basic"]["device"])
# 设置为评估模式
model.eval()
# 收集预测和真实标签
y_pred, y_true = [], []
# 不计算梯度的情况下进行预测
with torch.no_grad():
for data, target in data_loader:
label = target[..., : args["output_dim"]]
@ -291,12 +353,14 @@ class Trainer:
y_pred.append(output)
y_true.append(label)
# 合并所有批次的预测结果
if args["real_value"]:
y_pred = scaler.inverse_transform(torch.cat(y_pred, dim=0))
else:
y_pred = torch.cat(y_pred, dim=0)
y_true = torch.cat(y_true, dim=0)
# 计算并记录每个时间步的指标
for t in range(y_true.shape[1]):
mae, rmse, mape = all_metrics(
y_pred[:, t, ...],
@ -308,6 +372,7 @@ class Trainer:
f"Horizon {t + 1:02d}, MAE: {mae:.4f}, RMSE: {rmse:.4f}, MAPE: {mape:.4f}"
)
# 计算并记录平均指标
mae, rmse, mape = all_metrics(
y_pred, y_true, args["mae_thresh"], args["mape_thresh"]
)