新增SolarEnergy-iTransformer配置
This commit is contained in:
parent
faeb90e734
commit
b57fcef039
|
|
@ -2097,6 +2097,22 @@
|
|||
"program": "run.py",
|
||||
"console": "integratedTerminal",
|
||||
"args": "--config ./config/iTransformer/METR-LA.yaml"
|
||||
}
|
||||
},
|
||||
{
|
||||
"name": "iTransformer: AirQuality",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"program": "run.py",
|
||||
"console": "integratedTerminal",
|
||||
"args": "--config ./config/iTransformer/AirQuality.yaml"
|
||||
},
|
||||
{
|
||||
"name": "iTransformer: SolarEnergy",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"program": "run.py",
|
||||
"console": "integratedTerminal",
|
||||
"args": "--config ./config/iTransformer/SolarEnergy.yaml"
|
||||
},
|
||||
]
|
||||
}
|
||||
|
|
@ -0,0 +1,52 @@
|
|||
basic:
|
||||
dataset: AirQuality
|
||||
device: cuda:0
|
||||
mode: train
|
||||
model: iTransformer
|
||||
seed: 2023
|
||||
|
||||
data:
|
||||
batch_size: 16
|
||||
column_wise: false
|
||||
days_per_week: 7
|
||||
horizon: 24
|
||||
input_dim: 6
|
||||
lag: 24
|
||||
normalizer: std
|
||||
num_nodes: 35
|
||||
steps_per_day: 24
|
||||
test_ratio: 0.2
|
||||
val_ratio: 0.2
|
||||
|
||||
model:
|
||||
activation: gelu
|
||||
seq_len: 24
|
||||
pred_len: 24
|
||||
d_model: 128
|
||||
d_ff: 2048
|
||||
dropout: 0.1
|
||||
e_layers: 2
|
||||
n_heads: 8
|
||||
output_attention: False
|
||||
|
||||
|
||||
train:
|
||||
batch_size: 16
|
||||
debug: false
|
||||
early_stop: true
|
||||
early_stop_patience: 15
|
||||
epochs: 100
|
||||
grad_norm: false
|
||||
log_step: 1000
|
||||
loss_func: mae
|
||||
lr_decay: true
|
||||
lr_decay_rate: 0.3
|
||||
lr_decay_step: 5,20,40,70
|
||||
lr_init: 0.0001
|
||||
mae_thresh: None
|
||||
mape_thresh: 0.001
|
||||
max_grad_norm: 5
|
||||
output_dim: 35
|
||||
plot: false
|
||||
real_value: true
|
||||
weight_decay: 0
|
||||
|
|
@ -0,0 +1,52 @@
|
|||
basic:
|
||||
dataset: BJTaxi-InFlow
|
||||
device: cuda:0
|
||||
mode: train
|
||||
model: iTransformer
|
||||
seed: 2023
|
||||
|
||||
data:
|
||||
batch_size: 32
|
||||
column_wise: false
|
||||
days_per_week: 7
|
||||
horizon: 24
|
||||
input_dim: 1
|
||||
lag: 24
|
||||
normalizer: std
|
||||
num_nodes: 1024
|
||||
steps_per_day: 48
|
||||
test_ratio: 0.2
|
||||
val_ratio: 0.2
|
||||
|
||||
model:
|
||||
activation: gelu
|
||||
seq_len: 24
|
||||
pred_len: 24
|
||||
d_model: 128
|
||||
d_ff: 2048
|
||||
dropout: 0.1
|
||||
e_layers: 2
|
||||
n_heads: 8
|
||||
output_attention: False
|
||||
|
||||
|
||||
train:
|
||||
batch_size: 16
|
||||
debug: false
|
||||
early_stop: true
|
||||
early_stop_patience: 15
|
||||
epochs: 100
|
||||
grad_norm: false
|
||||
log_step: 1000
|
||||
loss_func: mae
|
||||
lr_decay: true
|
||||
lr_decay_rate: 0.3
|
||||
lr_decay_step: 5,20,40,70
|
||||
lr_init: 0.0001
|
||||
mae_thresh: None
|
||||
mape_thresh: 0.001
|
||||
max_grad_norm: 5
|
||||
output_dim: 1024
|
||||
plot: false
|
||||
real_value: true
|
||||
weight_decay: 0
|
||||
|
|
@ -0,0 +1,52 @@
|
|||
basic:
|
||||
dataset: BJTaxi-OutFlow
|
||||
device: cuda:0
|
||||
mode: train
|
||||
model: iTransformer
|
||||
seed: 2023
|
||||
|
||||
data:
|
||||
batch_size: 32
|
||||
column_wise: false
|
||||
days_per_week: 7
|
||||
horizon: 24
|
||||
input_dim: 1
|
||||
lag: 24
|
||||
normalizer: std
|
||||
num_nodes: 1024
|
||||
steps_per_day: 48
|
||||
test_ratio: 0.2
|
||||
val_ratio: 0.2
|
||||
|
||||
model:
|
||||
activation: gelu
|
||||
seq_len: 24
|
||||
pred_len: 24
|
||||
d_model: 128
|
||||
d_ff: 2048
|
||||
dropout: 0.1
|
||||
e_layers: 2
|
||||
n_heads: 8
|
||||
output_attention: False
|
||||
|
||||
|
||||
train:
|
||||
batch_size: 16
|
||||
debug: false
|
||||
early_stop: true
|
||||
early_stop_patience: 15
|
||||
epochs: 100
|
||||
grad_norm: false
|
||||
log_step: 1000
|
||||
loss_func: mae
|
||||
lr_decay: true
|
||||
lr_decay_rate: 0.3
|
||||
lr_decay_step: 5,20,40,70
|
||||
lr_init: 0.0001
|
||||
mae_thresh: None
|
||||
mape_thresh: 0.001
|
||||
max_grad_norm: 5
|
||||
output_dim: 1024
|
||||
plot: false
|
||||
real_value: true
|
||||
weight_decay: 0
|
||||
|
|
@ -1,6 +1,6 @@
|
|||
basic:
|
||||
dataset: METR-LA
|
||||
device: cuda:0
|
||||
device: cuda:1
|
||||
mode: train
|
||||
model: iTransformer
|
||||
seed: 2023
|
||||
|
|
|
|||
|
|
@ -0,0 +1,52 @@
|
|||
basic:
|
||||
dataset: NYCBike-InFlow
|
||||
device: cuda:0
|
||||
mode: train
|
||||
model: iTransformer
|
||||
seed: 2023
|
||||
|
||||
data:
|
||||
batch_size: 32
|
||||
column_wise: false
|
||||
days_per_week: 7
|
||||
horizon: 24
|
||||
input_dim: 1
|
||||
lag: 24
|
||||
normalizer: std
|
||||
num_nodes: 128
|
||||
steps_per_day: 48
|
||||
test_ratio: 0.2
|
||||
val_ratio: 0.2
|
||||
|
||||
model:
|
||||
activation: gelu
|
||||
seq_len: 24
|
||||
pred_len: 24
|
||||
d_model: 128
|
||||
d_ff: 2048
|
||||
dropout: 0.1
|
||||
e_layers: 2
|
||||
n_heads: 8
|
||||
output_attention: False
|
||||
|
||||
|
||||
train:
|
||||
batch_size: 16
|
||||
debug: false
|
||||
early_stop: true
|
||||
early_stop_patience: 15
|
||||
epochs: 100
|
||||
grad_norm: false
|
||||
log_step: 1000
|
||||
loss_func: mae
|
||||
lr_decay: true
|
||||
lr_decay_rate: 0.3
|
||||
lr_decay_step: 5,20,40,70
|
||||
lr_init: 0.0001
|
||||
mae_thresh: None
|
||||
mape_thresh: 0.001
|
||||
max_grad_norm: 5
|
||||
output_dim: 128
|
||||
plot: false
|
||||
real_value: true
|
||||
weight_decay: 0
|
||||
|
|
@ -0,0 +1,52 @@
|
|||
basic:
|
||||
dataset: NYCBike-OutFlow
|
||||
device: cuda:0
|
||||
mode: train
|
||||
model: iTransformer
|
||||
seed: 2023
|
||||
|
||||
data:
|
||||
batch_size: 32
|
||||
column_wise: false
|
||||
days_per_week: 7
|
||||
horizon: 24
|
||||
input_dim: 1
|
||||
lag: 24
|
||||
normalizer: std
|
||||
num_nodes: 128
|
||||
steps_per_day: 48
|
||||
test_ratio: 0.2
|
||||
val_ratio: 0.2
|
||||
|
||||
model:
|
||||
activation: gelu
|
||||
seq_len: 24
|
||||
pred_len: 24
|
||||
d_model: 128
|
||||
d_ff: 2048
|
||||
dropout: 0.1
|
||||
e_layers: 2
|
||||
n_heads: 8
|
||||
output_attention: False
|
||||
|
||||
|
||||
train:
|
||||
batch_size: 16
|
||||
debug: false
|
||||
early_stop: true
|
||||
early_stop_patience: 15
|
||||
epochs: 100
|
||||
grad_norm: false
|
||||
log_step: 1000
|
||||
loss_func: mae
|
||||
lr_decay: true
|
||||
lr_decay_rate: 0.3
|
||||
lr_decay_step: 5,20,40,70
|
||||
lr_init: 0.0001
|
||||
mae_thresh: None
|
||||
mape_thresh: 0.001
|
||||
max_grad_norm: 5
|
||||
output_dim: 128
|
||||
plot: false
|
||||
real_value: true
|
||||
weight_decay: 0
|
||||
|
|
@ -0,0 +1,52 @@
|
|||
basic:
|
||||
dataset: PEMS-BAY
|
||||
device: cuda:0
|
||||
mode: train
|
||||
model: iTransformer
|
||||
seed: 2023
|
||||
|
||||
data:
|
||||
batch_size: 16
|
||||
column_wise: false
|
||||
days_per_week: 7
|
||||
horizon: 24
|
||||
input_dim: 1
|
||||
lag: 24
|
||||
normalizer: std
|
||||
num_nodes: 325
|
||||
steps_per_day: 288
|
||||
test_ratio: 0.2
|
||||
val_ratio: 0.2
|
||||
|
||||
model:
|
||||
activation: gelu
|
||||
seq_len: 24
|
||||
pred_len: 24
|
||||
d_model: 128
|
||||
d_ff: 2048
|
||||
dropout: 0.1
|
||||
e_layers: 2
|
||||
n_heads: 8
|
||||
output_attention: False
|
||||
|
||||
|
||||
train:
|
||||
batch_size: 16
|
||||
debug: false
|
||||
early_stop: true
|
||||
early_stop_patience: 15
|
||||
epochs: 100
|
||||
grad_norm: false
|
||||
log_step: 1000
|
||||
loss_func: mae
|
||||
lr_decay: true
|
||||
lr_decay_rate: 0.3
|
||||
lr_decay_step: 5,20,40,70
|
||||
lr_init: 0.0001
|
||||
mae_thresh: None
|
||||
mape_thresh: 0.001
|
||||
max_grad_norm: 5
|
||||
output_dim: 325
|
||||
plot: false
|
||||
real_value: true
|
||||
weight_decay: 0
|
||||
|
|
@ -0,0 +1,52 @@
|
|||
basic:
|
||||
dataset: SolarEnergy
|
||||
device: cuda:0
|
||||
mode: train
|
||||
model: iTransformer
|
||||
seed: 2023
|
||||
|
||||
data:
|
||||
batch_size: 16
|
||||
column_wise: false
|
||||
days_per_week: 7
|
||||
horizon: 24
|
||||
input_dim: 6
|
||||
lag: 24
|
||||
normalizer: std
|
||||
num_nodes: 137
|
||||
steps_per_day: 24
|
||||
test_ratio: 0.2
|
||||
val_ratio: 0.2
|
||||
|
||||
model:
|
||||
activation: gelu
|
||||
seq_len: 24
|
||||
pred_len: 24
|
||||
d_model: 128
|
||||
d_ff: 2048
|
||||
dropout: 0.1
|
||||
e_layers: 2
|
||||
n_heads: 8
|
||||
output_attention: False
|
||||
|
||||
|
||||
train:
|
||||
batch_size: 16
|
||||
debug: false
|
||||
early_stop: true
|
||||
early_stop_patience: 15
|
||||
epochs: 100
|
||||
grad_norm: false
|
||||
log_step: 1000
|
||||
loss_func: mae
|
||||
lr_decay: true
|
||||
lr_decay_rate: 0.3
|
||||
lr_decay_step: 5,20,40,70
|
||||
lr_init: 0.0001
|
||||
mae_thresh: None
|
||||
mape_thresh: 0.001
|
||||
max_grad_norm: 5
|
||||
output_dim: 137
|
||||
plot: false
|
||||
real_value: true
|
||||
weight_decay: 0
|
||||
|
|
@ -7,6 +7,7 @@ import torch
|
|||
|
||||
def get_dataloader(args, normalizer="std", single=True):
|
||||
data = load_st_dataset(args)
|
||||
data = data[..., 0:1]
|
||||
|
||||
args = args["data"]
|
||||
L, N, F = data.shape
|
||||
|
|
|
|||
Loading…
Reference in New Issue