exp12 残差
This commit is contained in:
parent
86fabd4ca7
commit
bd94d3fdd3
8065
baseline.ipynb
8065
baseline.ipynb
File diff suppressed because it is too large
Load Diff
|
|
@ -17,6 +17,7 @@ model:
|
|||
input_dim: 1
|
||||
output_dim: 1
|
||||
embed_dim: 10
|
||||
in_len: 12
|
||||
rnn_units: 64
|
||||
num_layers: 1
|
||||
cheb_order: 2
|
||||
|
|
|
|||
|
|
@ -18,20 +18,7 @@ model:
|
|||
input_dim: 1
|
||||
output_dim: 1
|
||||
in_len: 12
|
||||
dropout: 0.3
|
||||
supports: null
|
||||
gcn_bool: true
|
||||
addaptadj: true
|
||||
aptinit: null
|
||||
in_dim: 2
|
||||
out_dim: 12
|
||||
residual_channels: 32
|
||||
dilation_channels: 32
|
||||
skip_channels: 256
|
||||
end_channels: 512
|
||||
kernel_size: 2
|
||||
blocks: 4
|
||||
layers: 2
|
||||
|
||||
|
||||
train:
|
||||
loss_func: mae
|
||||
|
|
|
|||
|
|
@ -0,0 +1,45 @@
|
|||
data:
|
||||
num_nodes: 883
|
||||
lag: 12
|
||||
horizon: 12
|
||||
val_ratio: 0.2
|
||||
test_ratio: 0.2
|
||||
tod: False
|
||||
normalizer: std
|
||||
column_wise: False
|
||||
default_graph: True
|
||||
add_time_in_day: True
|
||||
add_day_in_week: True
|
||||
steps_per_day: 288
|
||||
days_per_week: 7
|
||||
|
||||
model:
|
||||
batch_size: 64
|
||||
input_dim: 1
|
||||
output_dim: 1
|
||||
in_len: 12
|
||||
|
||||
|
||||
train:
|
||||
loss_func: mae
|
||||
seed: 10
|
||||
batch_size: 64
|
||||
epochs: 300
|
||||
lr_init: 0.003
|
||||
weight_decay: 0
|
||||
lr_decay: False
|
||||
lr_decay_rate: 0.3
|
||||
lr_decay_step: "5,20,40,70"
|
||||
early_stop: True
|
||||
early_stop_patience: 15
|
||||
grad_norm: False
|
||||
max_grad_norm: 5
|
||||
real_value: True
|
||||
|
||||
test:
|
||||
mae_thresh: null
|
||||
mape_thresh: 0.0
|
||||
|
||||
log:
|
||||
log_step: 200
|
||||
plot: False
|
||||
|
|
@ -14,18 +14,11 @@ data:
|
|||
days_per_week: 7
|
||||
|
||||
model:
|
||||
batch_size: 64
|
||||
input_dim: 1
|
||||
output_dim: 1
|
||||
embed_dim: 12
|
||||
rnn_units: 64
|
||||
num_layers: 1
|
||||
cheb_order: 2
|
||||
use_day: True
|
||||
use_week: True
|
||||
graph_size: 30
|
||||
expert_nums: 8
|
||||
top_k: 2
|
||||
hidden_dim: 64
|
||||
in_len: 12
|
||||
|
||||
|
||||
train:
|
||||
loss_func: mae
|
||||
|
|
|
|||
|
|
@ -0,0 +1,156 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
"""
|
||||
KAN网络
|
||||
"""
|
||||
|
||||
class KANLinear(nn.Module):
|
||||
"""
|
||||
A simple Kolmogorov–Arnold Network linear layer.
|
||||
y_k = sum_{q=1}^Q alpha_{kq} * phi_q( sum_{i=1}^I beta_{qi} * x_i )
|
||||
"""
|
||||
def __init__(self, in_features, out_features, hidden_funcs=10):
|
||||
super().__init__()
|
||||
self.in_features = in_features
|
||||
self.out_features = out_features
|
||||
self.num_hidden = hidden_funcs
|
||||
# mixing weights from input to Q hidden functions
|
||||
self.beta = nn.Parameter(torch.randn(hidden_funcs, in_features))
|
||||
# one univariate phi function per hidden channel
|
||||
self.phi = nn.ModuleList([
|
||||
nn.Sequential(nn.Linear(1, 1), nn.ReLU())
|
||||
for _ in range(hidden_funcs)
|
||||
])
|
||||
# mixing weights from hidden functions to outputs
|
||||
self.alpha = nn.Parameter(torch.randn(out_features, hidden_funcs))
|
||||
|
||||
def forward(self, x):
|
||||
# x: (..., in_features)
|
||||
# compute univariate projections for each hidden func: u_q = sum_i beta_{qi} * x_i
|
||||
u = torch.einsum('...i,qi->...q', x, self.beta) # (..., Q)
|
||||
# apply phi elementwise
|
||||
u_phi = torch.stack([
|
||||
self.phi[q](u[..., q].unsqueeze(-1)).squeeze(-1)
|
||||
for q in range(self.num_hidden)
|
||||
], dim=-1) # (..., Q)
|
||||
# mix to out_features
|
||||
y = torch.einsum('...q,kq->...k', u_phi, self.alpha) # (..., out_features)
|
||||
return y
|
||||
|
||||
|
||||
class DynamicGraphConstructor(nn.Module):
|
||||
def __init__(self, node_num, embed_dim):
|
||||
super().__init__()
|
||||
self.nodevec1 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True)
|
||||
self.nodevec2 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True)
|
||||
|
||||
def forward(self):
|
||||
# (N, D) @ (D, N) -> (N, N)
|
||||
adj = torch.matmul(self.nodevec1, self.nodevec2.T)
|
||||
adj = F.relu(adj)
|
||||
adj = F.softmax(adj, dim=-1)
|
||||
return adj
|
||||
|
||||
|
||||
class GraphConvBlock(nn.Module):
|
||||
def __init__(self, input_dim, output_dim, kan_hidden=8):
|
||||
super().__init__()
|
||||
self.theta = KANLinear(input_dim, output_dim, hidden_funcs=kan_hidden)
|
||||
self.residual = input_dim == output_dim
|
||||
if not self.residual:
|
||||
self.res_proj = KANLinear(input_dim, output_dim, hidden_funcs=kan_hidden)
|
||||
|
||||
def forward(self, x, adj):
|
||||
# x: (B, N, C) / adj: (N, N)
|
||||
res = x
|
||||
x = torch.matmul(adj, x)
|
||||
# apply KAN-based linear mapping
|
||||
B, N, C = x.shape
|
||||
x = x.view(B * N, C)
|
||||
x = self.theta(x)
|
||||
x = x.view(B, N, -1)
|
||||
if self.residual:
|
||||
x = x + res
|
||||
else:
|
||||
x = x + self.res_proj(res.view(B*N, C)).view(B, N, -1)
|
||||
return F.relu(x)
|
||||
|
||||
|
||||
class MANBA_Block(nn.Module):
|
||||
def __init__(self, input_dim, hidden_dim):
|
||||
super().__init__()
|
||||
self.attn = nn.MultiheadAttention(embed_dim=input_dim, num_heads=4, batch_first=True)
|
||||
self.ffn = nn.Sequential(
|
||||
nn.Linear(input_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, input_dim)
|
||||
)
|
||||
self.norm1 = nn.LayerNorm(input_dim)
|
||||
self.norm2 = nn.LayerNorm(input_dim)
|
||||
|
||||
def forward(self, x):
|
||||
# x: (B, N, C) -> treat N as temporal for attention
|
||||
res = x
|
||||
# swap dims to (B, T, C) for attn if needed
|
||||
x_attn, _ = self.attn(x, x, x)
|
||||
x = self.norm1(res + x_attn)
|
||||
|
||||
res2 = x
|
||||
x_ffn = self.ffn(x)
|
||||
x = self.norm2(res2 + x_ffn)
|
||||
return x
|
||||
|
||||
|
||||
class EXP(nn.Module):
|
||||
def __init__(self, args):
|
||||
super().__init__()
|
||||
self.horizon = args['horizon']
|
||||
self.output_dim = args['output_dim']
|
||||
self.seq_len = args.get('in_len', 12)
|
||||
self.hidden_dim = args.get('hidden_dim', 64)
|
||||
self.num_nodes = args['num_nodes']
|
||||
kan_hidden = args.get('kan_hidden', 8)
|
||||
|
||||
# 动态图构建
|
||||
self.graph = DynamicGraphConstructor(self.num_nodes, embed_dim=16)
|
||||
|
||||
# 输入映射:KAN替代线性层
|
||||
self.input_proj = KANLinear(self.seq_len, self.hidden_dim, hidden_funcs=kan_hidden)
|
||||
|
||||
# 图卷积
|
||||
self.gc = GraphConvBlock(self.hidden_dim, self.hidden_dim, kan_hidden=kan_hidden)
|
||||
|
||||
# 时间建模:保持MANBA
|
||||
self.manba = MANBA_Block(self.hidden_dim, self.hidden_dim * 2)
|
||||
|
||||
# 输出映射:KAN替代线性层
|
||||
out_size = self.horizon * self.output_dim
|
||||
self.out_proj = KANLinear(self.hidden_dim, out_size, hidden_funcs=kan_hidden)
|
||||
|
||||
def forward(self, x):
|
||||
# x: (B, T, N, D_total)
|
||||
x = x[..., 0]
|
||||
B, T, N = x.shape
|
||||
assert T == self.seq_len
|
||||
|
||||
# 输入投影 (B, T, N) -> (B, N, T) -> (B*N, T)
|
||||
x = x.permute(0, 2, 1).reshape(B * N, T)
|
||||
h = self.input_proj(x) # (B*N, hidden_dim)
|
||||
h = h.view(B, N, self.hidden_dim)
|
||||
|
||||
# 动态图
|
||||
adj = self.graph()
|
||||
|
||||
# 空间:图卷积
|
||||
h = self.gc(h, adj)
|
||||
|
||||
# 时间:MANBA
|
||||
h = self.manba(h)
|
||||
|
||||
# 输出
|
||||
h_flat = h.view(B * N, self.hidden_dim)
|
||||
out = self.out_proj(h_flat)
|
||||
out = out.view(B, N, self.horizon, self.output_dim).permute(0, 2, 1, 3)
|
||||
return out
|
||||
|
|
@ -0,0 +1,123 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
"""
|
||||
含残差版本 + 时间-空间-时间(三明治结构)
|
||||
"""
|
||||
|
||||
class DynamicGraphConstructor(nn.Module):
|
||||
def __init__(self, node_num, embed_dim):
|
||||
super().__init__()
|
||||
self.nodevec1 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True)
|
||||
self.nodevec2 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True)
|
||||
|
||||
def forward(self):
|
||||
# (N, D) @ (D, N) -> (N, N)
|
||||
adj = torch.matmul(self.nodevec1, self.nodevec2.T)
|
||||
adj = F.relu(adj)
|
||||
adj = F.softmax(adj, dim=-1)
|
||||
return adj
|
||||
|
||||
|
||||
class GraphConvBlock(nn.Module):
|
||||
def __init__(self, input_dim, output_dim):
|
||||
super().__init__()
|
||||
self.theta = nn.Linear(input_dim, output_dim)
|
||||
self.residual = input_dim == output_dim
|
||||
if not self.residual:
|
||||
self.res_proj = nn.Linear(input_dim, output_dim)
|
||||
|
||||
def forward(self, x, adj):
|
||||
# x: (B, N, C) / adj: (N, N)
|
||||
res = x
|
||||
x = torch.matmul(adj, x) # (B, N, C)
|
||||
x = self.theta(x)
|
||||
|
||||
# 残差连接
|
||||
if self.residual:
|
||||
x = x + res
|
||||
else:
|
||||
x = x + self.res_proj(res)
|
||||
|
||||
return F.relu(x)
|
||||
|
||||
|
||||
class MANBA_Block(nn.Module):
|
||||
def __init__(self, input_dim, hidden_dim):
|
||||
super().__init__()
|
||||
self.attn = nn.MultiheadAttention(embed_dim=input_dim, num_heads=4, batch_first=True)
|
||||
self.ffn = nn.Sequential(
|
||||
nn.Linear(input_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, input_dim)
|
||||
)
|
||||
self.norm1 = nn.LayerNorm(input_dim)
|
||||
self.norm2 = nn.LayerNorm(input_dim)
|
||||
|
||||
def forward(self, x):
|
||||
# x: (B, T, C) 或 (B, N, C) 当 N 视为 时间维度
|
||||
res = x
|
||||
x_attn, _ = self.attn(x, x, x)
|
||||
x = self.norm1(res + x_attn)
|
||||
|
||||
res2 = x
|
||||
x_ffn = self.ffn(x)
|
||||
x = self.norm2(res2 + x_ffn)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class EXP(nn.Module):
|
||||
def __init__(self, args):
|
||||
super().__init__()
|
||||
self.horizon = args['horizon']
|
||||
self.output_dim = args['output_dim']
|
||||
self.seq_len = args.get('in_len', 12)
|
||||
self.hidden_dim = args.get('hidden_dim', 64)
|
||||
self.num_nodes = args['num_nodes']
|
||||
|
||||
# 动态图构建
|
||||
self.graph = DynamicGraphConstructor(self.num_nodes, embed_dim=16)
|
||||
|
||||
# 输入映射层
|
||||
self.input_proj = nn.Linear(self.seq_len, self.hidden_dim)
|
||||
|
||||
# 图卷积
|
||||
self.gc = GraphConvBlock(self.hidden_dim, self.hidden_dim)
|
||||
|
||||
# MANBA block(时间建模)
|
||||
self.manba = MANBA_Block(self.hidden_dim, self.hidden_dim * 2)
|
||||
|
||||
# 输出映射
|
||||
self.out_proj = nn.Linear(self.hidden_dim, self.horizon * self.output_dim)
|
||||
|
||||
def forward(self, x):
|
||||
# x: (B, T, N, D_total)
|
||||
x = x[..., 0] # 只用主通道 (B, T, N)
|
||||
B, T, N = x.shape
|
||||
assert T == self.seq_len
|
||||
|
||||
# 输入投影 (B, T, N) -> (B, N, T) -> (B*N, T) -> (B*N, hidden_dim)
|
||||
x_flat = x.permute(0, 2, 1).reshape(B * N, T)
|
||||
h = self.input_proj(x_flat) # (B*N, hidden_dim)
|
||||
h = h.view(B, N, self.hidden_dim) # (B, N, hidden_dim)
|
||||
|
||||
# === 时间建模(首次) ===
|
||||
# 将 N 视作 时间维度进行注意力
|
||||
h_time1 = self.manba(h) # (B, N, hidden_dim)
|
||||
|
||||
# 动态图构建
|
||||
adj = self.graph() # (N, N)
|
||||
|
||||
# === 空间建模 ===
|
||||
h_space = self.gc(h_time1, adj) # (B, N, hidden_dim)
|
||||
|
||||
# === 时间建模(再一次) ===
|
||||
h_time2 = self.manba(h_space) # (B, N, hidden_dim)
|
||||
|
||||
# 输出映射
|
||||
out = self.out_proj(h_time2) # (B, N, horizon * output_dim)
|
||||
out = out.view(B, N, self.horizon, self.output_dim).permute(0, 2, 1, 3)
|
||||
return out # (B, horizon, N, output_dim)
|
||||
|
||||
|
|
@ -0,0 +1,128 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
"""
|
||||
含残差的双层三明治结构模型
|
||||
第一层:时间 -> 空间 -> 时间
|
||||
残差连接:层输出 + 层输入
|
||||
第二层:同样三明治结构 -> 最终输出
|
||||
有效
|
||||
"""
|
||||
|
||||
class DynamicGraphConstructor(nn.Module):
|
||||
def __init__(self, node_num, embed_dim):
|
||||
super().__init__()
|
||||
self.nodevec1 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True)
|
||||
self.nodevec2 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True)
|
||||
|
||||
def forward(self):
|
||||
# (N, D) @ (D, N) -> (N, N)
|
||||
adj = torch.matmul(self.nodevec1, self.nodevec2.T)
|
||||
adj = F.relu(adj)
|
||||
adj = F.softmax(adj, dim=-1)
|
||||
return adj
|
||||
|
||||
|
||||
class GraphConvBlock(nn.Module):
|
||||
def __init__(self, input_dim, output_dim):
|
||||
super().__init__()
|
||||
self.theta = nn.Linear(input_dim, output_dim)
|
||||
self.residual = (input_dim == output_dim)
|
||||
if not self.residual:
|
||||
self.res_proj = nn.Linear(input_dim, output_dim)
|
||||
|
||||
def forward(self, x, adj):
|
||||
# x: (B, N, C); adj: (N, N)
|
||||
res = x
|
||||
x = torch.matmul(adj, x) # 空间卷积
|
||||
x = self.theta(x)
|
||||
# 残差
|
||||
x = x + (res if self.residual else self.res_proj(res))
|
||||
return F.relu(x)
|
||||
|
||||
|
||||
class MANBA_Block(nn.Module):
|
||||
def __init__(self, input_dim, hidden_dim):
|
||||
super().__init__()
|
||||
self.attn = nn.MultiheadAttention(embed_dim=input_dim, num_heads=4, batch_first=True)
|
||||
self.ffn = nn.Sequential(
|
||||
nn.Linear(input_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, input_dim)
|
||||
)
|
||||
self.norm1 = nn.LayerNorm(input_dim)
|
||||
self.norm2 = nn.LayerNorm(input_dim)
|
||||
|
||||
def forward(self, x):
|
||||
# x: (B, N, C) 视 N 维为时间序列长度
|
||||
res = x
|
||||
x_attn, _ = self.attn(x, x, x)
|
||||
x = self.norm1(res + x_attn)
|
||||
res2 = x
|
||||
x_ffn = self.ffn(x)
|
||||
x = self.norm2(res2 + x_ffn)
|
||||
return x
|
||||
|
||||
|
||||
class SandwichBlock(nn.Module):
|
||||
"""
|
||||
时间-空间-时间 三明治结构
|
||||
输入/输出: (B, N, hidden_dim)
|
||||
"""
|
||||
def __init__(self, num_nodes, embed_dim, hidden_dim):
|
||||
super().__init__()
|
||||
self.manba1 = MANBA_Block(hidden_dim, hidden_dim * 2)
|
||||
self.graph_constructor = DynamicGraphConstructor(num_nodes, embed_dim)
|
||||
self.gc = GraphConvBlock(hidden_dim, hidden_dim)
|
||||
self.manba2 = MANBA_Block(hidden_dim, hidden_dim * 2)
|
||||
|
||||
def forward(self, h):
|
||||
# h: (B, N, hidden_dim)
|
||||
h1 = self.manba1(h)
|
||||
adj = self.graph_constructor() # (N, N)
|
||||
h2 = self.gc(h1, adj)
|
||||
h3 = self.manba2(h2)
|
||||
return h3
|
||||
|
||||
|
||||
class EXP(nn.Module):
|
||||
def __init__(self, args):
|
||||
super().__init__()
|
||||
self.horizon = args['horizon']
|
||||
self.output_dim = args['output_dim']
|
||||
self.seq_len = args.get('in_len', 12)
|
||||
self.hidden_dim = args.get('hidden_dim', 64)
|
||||
self.num_nodes = args['num_nodes']
|
||||
self.embed_dim = args.get('embed_dim', 16)
|
||||
|
||||
# 输入映射
|
||||
self.input_proj = nn.Linear(self.seq_len, self.hidden_dim)
|
||||
# 两层三明治块
|
||||
self.sandwich1 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim)
|
||||
self.sandwich2 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim)
|
||||
# 输出映射
|
||||
self.out_proj = nn.Linear(self.hidden_dim, self.horizon * self.output_dim)
|
||||
|
||||
def forward(self, x):
|
||||
# x: (B, T, N, D_total)
|
||||
x_main = x[..., 0] # (B, T, N)
|
||||
B, T, N = x_main.shape
|
||||
assert T == self.seq_len
|
||||
|
||||
# 输入投影 (B, T, N) -> (B*N, T) -> (B, N, hidden_dim)
|
||||
x_flat = x_main.permute(0, 2, 1).reshape(B * N, T)
|
||||
h0 = self.input_proj(x_flat).view(B, N, self.hidden_dim)
|
||||
|
||||
# 第一层三明治 + 残差
|
||||
h1 = self.sandwich1(h0)
|
||||
h1 = h1 + h0
|
||||
|
||||
# 第二层三明治
|
||||
h2 = self.sandwich2(h1)
|
||||
|
||||
# 输出映射
|
||||
out = self.out_proj(h2) # (B, N, H*D_out)
|
||||
out = out.view(B, N, self.horizon, self.output_dim)
|
||||
out = out.permute(0, 2, 1, 3) # (B, horizon, N, output_dim)
|
||||
return out
|
||||
|
|
@ -0,0 +1,125 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
"""
|
||||
含残差的双层 空间->时间->空间 结构模型 无效
|
||||
"""
|
||||
|
||||
class DynamicGraphConstructor(nn.Module):
|
||||
def __init__(self, node_num, embed_dim):
|
||||
super().__init__()
|
||||
self.nodevec1 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True)
|
||||
self.nodevec2 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True)
|
||||
|
||||
def forward(self):
|
||||
# 构造动态邻接矩阵 (N, N)
|
||||
adj = torch.matmul(self.nodevec1, self.nodevec2.T)
|
||||
adj = F.relu(adj)
|
||||
adj = F.softmax(adj, dim=-1)
|
||||
return adj
|
||||
|
||||
|
||||
class GraphConvBlock(nn.Module):
|
||||
def __init__(self, input_dim, output_dim):
|
||||
super().__init__()
|
||||
self.theta = nn.Linear(input_dim, output_dim)
|
||||
self.residual = (input_dim == output_dim)
|
||||
if not self.residual:
|
||||
self.res_proj = nn.Linear(input_dim, output_dim)
|
||||
|
||||
def forward(self, x, adj):
|
||||
# x: (B, N, C)
|
||||
res = x
|
||||
x = torch.matmul(adj, x)
|
||||
x = self.theta(x)
|
||||
x = x + (res if self.residual else self.res_proj(res))
|
||||
return F.relu(x)
|
||||
|
||||
|
||||
class MANBA_Block(nn.Module):
|
||||
def __init__(self, input_dim, hidden_dim):
|
||||
super().__init__()
|
||||
self.attn = nn.MultiheadAttention(embed_dim=input_dim, num_heads=4, batch_first=True)
|
||||
self.ffn = nn.Sequential(
|
||||
nn.Linear(input_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, input_dim)
|
||||
)
|
||||
self.norm1 = nn.LayerNorm(input_dim)
|
||||
self.norm2 = nn.LayerNorm(input_dim)
|
||||
|
||||
def forward(self, x):
|
||||
# x: (B, N, C) 当 N 视为时间序列长度
|
||||
res = x
|
||||
x_attn, _ = self.attn(x, x, x)
|
||||
x = self.norm1(res + x_attn)
|
||||
res2 = x
|
||||
x_ffn = self.ffn(x)
|
||||
x = self.norm2(res2 + x_ffn)
|
||||
return x
|
||||
|
||||
|
||||
class SandwichBlock(nn.Module):
|
||||
"""
|
||||
空间 -> 时间 -> 空间 三明治结构
|
||||
输入/输出: (B, N, hidden_dim)
|
||||
"""
|
||||
def __init__(self, num_nodes, embed_dim, hidden_dim):
|
||||
super().__init__()
|
||||
self.graph_constructor = DynamicGraphConstructor(num_nodes, embed_dim)
|
||||
self.gc1 = GraphConvBlock(hidden_dim, hidden_dim)
|
||||
self.manba = MANBA_Block(hidden_dim, hidden_dim * 2)
|
||||
self.gc2 = GraphConvBlock(hidden_dim, hidden_dim)
|
||||
|
||||
def forward(self, h):
|
||||
# 第一步:空间卷积
|
||||
adj = self.graph_constructor()
|
||||
h1 = self.gc1(h, adj)
|
||||
# 第二步:时间注意力
|
||||
h2 = self.manba(h1)
|
||||
# 第三步:空间卷积
|
||||
h3 = self.gc2(h2, adj)
|
||||
return h3
|
||||
|
||||
|
||||
class EXP(nn.Module):
|
||||
def __init__(self, args):
|
||||
super().__init__()
|
||||
self.horizon = args['horizon']
|
||||
self.output_dim = args['output_dim']
|
||||
self.seq_len = args.get('in_len', 12)
|
||||
self.hidden_dim = args.get('hidden_dim', 64)
|
||||
self.num_nodes = args['num_nodes']
|
||||
self.embed_dim = args.get('embed_dim', 16)
|
||||
|
||||
# 输入映射
|
||||
self.input_proj = nn.Linear(self.seq_len, self.hidden_dim)
|
||||
# 两层 空间-时间-空间 三明治块
|
||||
self.sandwich1 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim)
|
||||
self.sandwich2 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim)
|
||||
# 输出映射
|
||||
self.out_proj = nn.Linear(self.hidden_dim, self.horizon * self.output_dim)
|
||||
|
||||
def forward(self, x):
|
||||
# x: (B, T, N, D)
|
||||
x_main = x[..., 0] # (B, T, N)
|
||||
B, T, N = x_main.shape
|
||||
assert T == self.seq_len
|
||||
|
||||
# 投影到隐藏维 (B,N,hidden)
|
||||
x_flat = x_main.permute(0, 2, 1).reshape(B * N, T)
|
||||
h0 = self.input_proj(x_flat).view(B, N, self.hidden_dim)
|
||||
|
||||
# 第一层三明治 + 残差
|
||||
h1 = self.sandwich1(h0)
|
||||
h1 = h1 + h0
|
||||
# 第二层三明治
|
||||
h2 = self.sandwich2(h1)
|
||||
|
||||
# 输出
|
||||
out = self.out_proj(h2) # (B, N, H*D_out)
|
||||
out = out.view(B, N, self.horizon, self.output_dim)
|
||||
out = out.permute(0, 2, 1, 3) # (B, horizon, N, output_dim)
|
||||
return out
|
||||
|
||||
|
|
@ -0,0 +1,147 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
"""
|
||||
含时间/空间额外特征的双层 时间->空间->时间 三明治结构模型
|
||||
使用 x[...,0] 主通道,x[...,1] time_in_day,x[...,2] day_in_week
|
||||
通过独立投影融合三路信息
|
||||
无改进
|
||||
"""
|
||||
|
||||
class DynamicGraphConstructor(nn.Module):
|
||||
def __init__(self, node_num, embed_dim):
|
||||
super().__init__()
|
||||
self.nodevec1 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True)
|
||||
self.nodevec2 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True)
|
||||
|
||||
def forward(self):
|
||||
# 构造动态邻接矩阵 (N, N)
|
||||
adj = torch.matmul(self.nodevec1, self.nodevec2.T)
|
||||
adj = F.relu(adj)
|
||||
adj = F.softmax(adj, dim=-1)
|
||||
return adj
|
||||
|
||||
|
||||
class GraphConvBlock(nn.Module):
|
||||
def __init__(self, input_dim, output_dim):
|
||||
super().__init__()
|
||||
self.theta = nn.Linear(input_dim, output_dim)
|
||||
self.residual = (input_dim == output_dim)
|
||||
if not self.residual:
|
||||
self.res_proj = nn.Linear(input_dim, output_dim)
|
||||
|
||||
def forward(self, x, adj):
|
||||
# x: (B, N, C)
|
||||
res = x
|
||||
x = torch.matmul(adj, x)
|
||||
x = self.theta(x)
|
||||
x = x + (res if self.residual else self.res_proj(res))
|
||||
return F.relu(x)
|
||||
|
||||
|
||||
class MANBA_Block(nn.Module):
|
||||
def __init__(self, input_dim, hidden_dim):
|
||||
super().__init__()
|
||||
self.attn = nn.MultiheadAttention(embed_dim=input_dim, num_heads=4, batch_first=True)
|
||||
self.ffn = nn.Sequential(
|
||||
nn.Linear(input_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, input_dim)
|
||||
)
|
||||
self.norm1 = nn.LayerNorm(input_dim)
|
||||
self.norm2 = nn.LayerNorm(input_dim)
|
||||
|
||||
def forward(self, x):
|
||||
# x: (B, N, C) 视 N 维为时间序列长度
|
||||
res = x
|
||||
x_attn, _ = self.attn(x, x, x)
|
||||
x = self.norm1(res + x_attn)
|
||||
res2 = x
|
||||
x_ffn = self.ffn(x)
|
||||
x = self.norm2(res2 + x_ffn)
|
||||
return x
|
||||
|
||||
|
||||
class SandwichBlock(nn.Module):
|
||||
"""
|
||||
时间 -> 空间 -> 时间 三明治结构
|
||||
输入/输出: (B, N, hidden_dim)
|
||||
"""
|
||||
def __init__(self, num_nodes, embed_dim, hidden_dim):
|
||||
super().__init__()
|
||||
self.manba1 = MANBA_Block(hidden_dim, hidden_dim * 2)
|
||||
self.graph_constructor = DynamicGraphConstructor(num_nodes, embed_dim)
|
||||
self.gc = GraphConvBlock(hidden_dim, hidden_dim)
|
||||
self.manba2 = MANBA_Block(hidden_dim, hidden_dim * 2)
|
||||
|
||||
def forward(self, h):
|
||||
# h: (B, N, hidden_dim)
|
||||
# 第一步:时间注意力
|
||||
h1 = self.manba1(h)
|
||||
# 第二步:空间卷积
|
||||
adj = self.graph_constructor()
|
||||
h2 = self.gc(h1, adj)
|
||||
# 第三步:时间注意力
|
||||
h3 = self.manba2(h2)
|
||||
return h3
|
||||
|
||||
|
||||
class EXP(nn.Module):
|
||||
def __init__(self, args):
|
||||
super().__init__()
|
||||
self.horizon = args['horizon']
|
||||
self.output_dim = args['output_dim']
|
||||
self.seq_len = args.get('in_len', 12)
|
||||
self.hidden_dim = args.get('hidden_dim', 64)
|
||||
self.num_nodes = args['num_nodes']
|
||||
self.embed_dim = args.get('embed_dim', 16)
|
||||
|
||||
# 对三路输入分别投影到隐藏维度
|
||||
self.main_proj = nn.Linear(self.seq_len, self.hidden_dim)
|
||||
self.time_proj = nn.Linear(self.seq_len, self.hidden_dim)
|
||||
self.week_proj = nn.Linear(self.seq_len, self.hidden_dim)
|
||||
|
||||
# 双层 时间->空间->时间 三明治块
|
||||
self.sandwich1 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim)
|
||||
self.sandwich2 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim)
|
||||
|
||||
# 输出映射
|
||||
self.out_proj = nn.Linear(self.hidden_dim, self.horizon * self.output_dim)
|
||||
|
||||
def forward(self, x):
|
||||
# x: (B, T, N, D_total)
|
||||
x_main = x[..., 0] # (B, T, N)
|
||||
x_time = x[..., 1] # (B, T, N)
|
||||
x_week = x[..., 2] # (B, T, N)
|
||||
B, T, N = x_main.shape
|
||||
assert T == self.seq_len
|
||||
|
||||
# 将三路特征分别映射后叠加
|
||||
x_main_flat = x_main.permute(0, 2, 1).reshape(B * N, T)
|
||||
h_main = self.main_proj(x_main_flat).view(B, N, self.hidden_dim)
|
||||
x_time_flat = x_time.permute(0, 2, 1).reshape(B * N, T)
|
||||
h_time = self.time_proj(x_time_flat).view(B, N, self.hidden_dim)
|
||||
x_week_flat = x_week.permute(0, 2, 1).reshape(B * N, T)
|
||||
h_week = self.week_proj(x_week_flat).view(B, N, self.hidden_dim)
|
||||
|
||||
# 初始隐藏表示,融合三路信息
|
||||
h0 = h_main + h_time + h_week
|
||||
|
||||
# 第一层三明治 + 残差
|
||||
h1 = self.sandwich1(h0)
|
||||
h1 = h1 + h0
|
||||
# 第二层三明治
|
||||
h2 = self.sandwich2(h1)
|
||||
|
||||
# 输出
|
||||
out = self.out_proj(h2)
|
||||
out = out.view(B, N, self.horizon, self.output_dim)
|
||||
out = out.permute(0, 2, 1, 3) # (B, horizon, N, D_out)
|
||||
return out
|
||||
|
||||
# 示例测试
|
||||
# args = {'horizon':12,'output_dim':1,'in_len':12,'hidden_dim':64,'num_nodes':307,'embed_dim':16}
|
||||
# model = EXP(args)
|
||||
# x = torch.randn(16, 12, 307, 3)
|
||||
# print(model(x).shape) # (16,12,307,1)
|
||||
|
|
@ -0,0 +1,139 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
"""
|
||||
含残差的双层三明治结构模型
|
||||
第一层:时间 -> 空间 -> 时间 -> Conv -> Residual差分 -> 输入第二层
|
||||
第二层:时间 -> 空间 -> 时间 -> Conv -> 最终输出
|
||||
无效但接近
|
||||
"""
|
||||
|
||||
class DynamicGraphConstructor(nn.Module):
|
||||
def __init__(self, node_num, embed_dim):
|
||||
super().__init__()
|
||||
self.nodevec1 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True)
|
||||
self.nodevec2 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True)
|
||||
|
||||
def forward(self):
|
||||
# (N, D) @ (D, N) -> (N, N)
|
||||
adj = torch.matmul(self.nodevec1, self.nodevec2.T)
|
||||
adj = F.relu(adj)
|
||||
adj = F.softmax(adj, dim=-1)
|
||||
return adj
|
||||
|
||||
|
||||
class GraphConvBlock(nn.Module):
|
||||
def __init__(self, input_dim, output_dim):
|
||||
super().__init__()
|
||||
self.theta = nn.Linear(input_dim, output_dim)
|
||||
self.residual = (input_dim == output_dim)
|
||||
if not self.residual:
|
||||
self.res_proj = nn.Linear(input_dim, output_dim)
|
||||
|
||||
def forward(self, x, adj):
|
||||
# x: (B, N, C); adj: (N, N)
|
||||
res = x
|
||||
x = torch.matmul(adj, x) # 空间卷积
|
||||
x = self.theta(x)
|
||||
# 残差
|
||||
x = x + (res if self.residual else self.res_proj(res))
|
||||
return F.relu(x)
|
||||
|
||||
|
||||
class MANBA_Block(nn.Module):
|
||||
def __init__(self, input_dim, hidden_dim):
|
||||
super().__init__()
|
||||
self.attn = nn.MultiheadAttention(embed_dim=input_dim, num_heads=4, batch_first=True)
|
||||
self.ffn = nn.Sequential(
|
||||
nn.Linear(input_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, input_dim)
|
||||
)
|
||||
self.norm1 = nn.LayerNorm(input_dim)
|
||||
self.norm2 = nn.LayerNorm(input_dim)
|
||||
|
||||
def forward(self, x):
|
||||
# x: (B, N, C) 视 N 维为时间序列长度
|
||||
res = x
|
||||
x_attn, _ = self.attn(x, x, x)
|
||||
x = self.norm1(res + x_attn)
|
||||
res2 = x
|
||||
x_ffn = self.ffn(x)
|
||||
x = self.norm2(res2 + x_ffn)
|
||||
return x
|
||||
|
||||
|
||||
class SandwichBlock(nn.Module):
|
||||
"""
|
||||
时间-空间-时间 三明治结构
|
||||
输入/输出: (B, N, hidden_dim)
|
||||
"""
|
||||
def __init__(self, num_nodes, embed_dim, hidden_dim):
|
||||
super().__init__()
|
||||
self.manba1 = MANBA_Block(hidden_dim, hidden_dim * 2)
|
||||
self.graph_constructor = DynamicGraphConstructor(num_nodes, embed_dim)
|
||||
self.gc = GraphConvBlock(hidden_dim, hidden_dim)
|
||||
self.manba2 = MANBA_Block(hidden_dim, hidden_dim * 2)
|
||||
|
||||
def forward(self, h):
|
||||
# h: (B, N, hidden_dim)
|
||||
h1 = self.manba1(h)
|
||||
adj = self.graph_constructor() # (N, N)
|
||||
h2 = self.gc(h1, adj)
|
||||
h3 = self.manba2(h2)
|
||||
return h3
|
||||
|
||||
|
||||
class EXP(nn.Module):
|
||||
def __init__(self, args):
|
||||
super().__init__()
|
||||
self.horizon = args['horizon']
|
||||
self.output_dim = args['output_dim']
|
||||
self.seq_len = args.get('in_len', 12)
|
||||
self.hidden_dim = args.get('hidden_dim', 64)
|
||||
self.num_nodes = args['num_nodes']
|
||||
self.embed_dim = args.get('embed_dim', 16)
|
||||
|
||||
# 输入映射: (batch*N, seq_len) -> hidden_dim
|
||||
self.input_proj = nn.Linear(self.seq_len, self.hidden_dim)
|
||||
# 两层三明治块
|
||||
self.sandwich1 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim)
|
||||
self.sandwich2 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim)
|
||||
# 卷积层用于残差处理
|
||||
self.res_conv1 = nn.Conv1d(in_channels=self.hidden_dim, out_channels=self.hidden_dim, kernel_size=1)
|
||||
self.res_conv2 = nn.Conv1d(in_channels=self.hidden_dim, out_channels=self.hidden_dim, kernel_size=1)
|
||||
# 输出映射
|
||||
self.out_proj = nn.Linear(self.hidden_dim, self.horizon * self.output_dim)
|
||||
|
||||
def forward(self, x):
|
||||
# x: (B, T, N, D_total)
|
||||
x_main = x[..., 0] # (B, T, N)
|
||||
B, T, N = x_main.shape
|
||||
assert T == self.seq_len
|
||||
|
||||
# 输入投影 (B, T, N) -> (B*N, T) -> (B, N, hidden_dim)
|
||||
x_flat = x_main.permute(0, 2, 1).reshape(B * N, T)
|
||||
h0 = self.input_proj(x_flat).view(B, N, self.hidden_dim)
|
||||
|
||||
# 第一层三明治
|
||||
h1_sand = self.sandwich1(h0) # (B, N, hidden_dim)
|
||||
# 卷积残差 (节点维度视为长度)
|
||||
h1_perm = h1_sand.permute(0, 2, 1) # (B, C, N)
|
||||
h1_conv = self.res_conv1(h1_perm)
|
||||
h1 = h1_conv.permute(0, 2, 1) # (B, N, hidden_dim)
|
||||
|
||||
# 计算差分残差作为第二层输入
|
||||
h2_input = h1 - h0
|
||||
|
||||
# 第二层三明治
|
||||
h2_sand = self.sandwich2(h2_input)
|
||||
# 再次卷积处理
|
||||
h2_perm = h2_sand.permute(0, 2, 1)
|
||||
h2 = self.res_conv2(h2_perm).permute(0, 2, 1)
|
||||
|
||||
# 输出映射
|
||||
out = self.out_proj(h2) # (B, N, H*D_out)
|
||||
out = out.view(B, N, self.horizon, self.output_dim)
|
||||
out = out.permute(0, 2, 1, 3) # (B, horizon, N, output_dim)
|
||||
return out
|
||||
|
|
@ -0,0 +1,119 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
"""
|
||||
含残差的双层三明治结构模型
|
||||
第一层:时间 -> 空间 -> 时间
|
||||
残差连接:层输出 + 层输入
|
||||
第二层:同样三明治结构 -> 最终输出
|
||||
无小残差
|
||||
"""
|
||||
|
||||
class DynamicGraphConstructor(nn.Module):
|
||||
def __init__(self, node_num, embed_dim):
|
||||
super().__init__()
|
||||
self.nodevec1 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True)
|
||||
self.nodevec2 = nn.Parameter(torch.randn(node_num, embed_dim), requires_grad=True)
|
||||
|
||||
def forward(self):
|
||||
# (N, D) @ (D, N) -> (N, N)
|
||||
adj = torch.matmul(self.nodevec1, self.nodevec2.T)
|
||||
adj = F.relu(adj)
|
||||
adj = F.softmax(adj, dim=-1)
|
||||
return adj
|
||||
|
||||
|
||||
class GraphConvBlock(nn.Module):
|
||||
def __init__(self, input_dim, output_dim):
|
||||
super().__init__()
|
||||
self.theta = nn.Linear(input_dim, output_dim)
|
||||
|
||||
def forward(self, x, adj):
|
||||
# x: (B, N, C) / adj: (N, N)
|
||||
x = torch.matmul(adj, x) # (B, N, C)
|
||||
x = self.theta(x)
|
||||
return F.relu(x)
|
||||
|
||||
|
||||
class MANBA_Block(nn.Module):
|
||||
def __init__(self, input_dim, hidden_dim):
|
||||
super().__init__()
|
||||
self.attn = nn.MultiheadAttention(embed_dim=input_dim, num_heads=4, batch_first=True)
|
||||
self.ffn = nn.Sequential(
|
||||
nn.Linear(input_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, input_dim)
|
||||
)
|
||||
self.norm1 = nn.LayerNorm(input_dim)
|
||||
self.norm2 = nn.LayerNorm(input_dim)
|
||||
|
||||
def forward(self, x):
|
||||
# x: (B, T, C)
|
||||
x_attn, _ = self.attn(x, x, x)
|
||||
x = self.norm1(x + x_attn)
|
||||
x_ffn = self.ffn(x)
|
||||
return self.norm2(x + x_ffn)
|
||||
|
||||
|
||||
class SandwichBlock(nn.Module):
|
||||
"""
|
||||
时间-空间-时间 三明治结构
|
||||
输入/输出: (B, N, hidden_dim)
|
||||
"""
|
||||
def __init__(self, num_nodes, embed_dim, hidden_dim):
|
||||
super().__init__()
|
||||
self.manba1 = MANBA_Block(hidden_dim, hidden_dim * 2)
|
||||
self.graph_constructor = DynamicGraphConstructor(num_nodes, embed_dim)
|
||||
self.gc = GraphConvBlock(hidden_dim, hidden_dim)
|
||||
self.manba2 = MANBA_Block(hidden_dim, hidden_dim * 2)
|
||||
|
||||
def forward(self, h):
|
||||
# h: (B, N, hidden_dim)
|
||||
h1 = self.manba1(h)
|
||||
adj = self.graph_constructor() # (N, N)
|
||||
h2 = self.gc(h1, adj)
|
||||
h3 = self.manba2(h2)
|
||||
return h3
|
||||
|
||||
|
||||
class EXP(nn.Module):
|
||||
def __init__(self, args):
|
||||
super().__init__()
|
||||
self.horizon = args['horizon']
|
||||
self.output_dim = args['output_dim']
|
||||
self.seq_len = args.get('in_len', 12)
|
||||
self.hidden_dim = args.get('hidden_dim', 64)
|
||||
self.num_nodes = args['num_nodes']
|
||||
self.embed_dim = args.get('embed_dim', 16)
|
||||
|
||||
# 输入映射
|
||||
self.input_proj = nn.Linear(self.seq_len, self.hidden_dim)
|
||||
# 两层三明治块
|
||||
self.sandwich1 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim)
|
||||
self.sandwich2 = SandwichBlock(self.num_nodes, self.embed_dim, self.hidden_dim)
|
||||
# 输出映射
|
||||
self.out_proj = nn.Linear(self.hidden_dim, self.horizon * self.output_dim)
|
||||
|
||||
def forward(self, x):
|
||||
# x: (B, T, N, D_total)
|
||||
x_main = x[..., 0] # (B, T, N)
|
||||
B, T, N = x_main.shape
|
||||
assert T == self.seq_len
|
||||
|
||||
# 输入投影 (B, T, N) -> (B*N, T) -> (B, N, hidden_dim)
|
||||
x_flat = x_main.permute(0, 2, 1).reshape(B * N, T)
|
||||
h0 = self.input_proj(x_flat).view(B, N, self.hidden_dim)
|
||||
|
||||
# 第一层三明治 + 残差
|
||||
h1 = self.sandwich1(h0)
|
||||
h1 = h1 + h0
|
||||
|
||||
# 第二层三明治
|
||||
h2 = self.sandwich2(h1)
|
||||
|
||||
# 输出映射
|
||||
out = self.out_proj(h2) # (B, N, H*D_out)
|
||||
out = out.view(B, N, self.horizon, self.output_dim)
|
||||
out = out.permute(0, 2, 1, 3) # (B, horizon, N, output_dim)
|
||||
return out
|
||||
|
|
@ -2,6 +2,10 @@ import torch
|
|||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
"""
|
||||
不含残差版本
|
||||
"""
|
||||
|
||||
|
||||
class DynamicGraphConstructor(nn.Module):
|
||||
def __init__(self, node_num, embed_dim):
|
||||
|
|
@ -75,7 +79,7 @@ class EXP(nn.Module):
|
|||
|
||||
def forward(self, x):
|
||||
# x: (B, T, N, D_total)
|
||||
x = x.sum(dim=-1) # (B, T, N)
|
||||
x = x[..., 0] # 只用主通道 (B, T, N)
|
||||
B, T, N = x.shape
|
||||
assert T == self.seq_len
|
||||
|
||||
|
|
|
|||
|
|
@ -2,6 +2,9 @@ import torch
|
|||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
"""
|
||||
含残差版本
|
||||
"""
|
||||
|
||||
class DynamicGraphConstructor(nn.Module):
|
||||
def __init__(self, node_num, embed_dim):
|
||||
|
|
|
|||
|
|
@ -2,6 +2,9 @@ import torch
|
|||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
"""
|
||||
加入混合专家
|
||||
"""
|
||||
|
||||
class DynamicGraphConstructor(nn.Module):
|
||||
def __init__(self, node_num, embed_dim):
|
||||
|
|
|
|||
|
|
@ -13,7 +13,7 @@ from model.STFGNN.STFGNN import STFGNN
|
|||
from model.STSGCN.STSGCN import STSGCN
|
||||
from model.STGODE.STGODE import ODEGCN
|
||||
from model.PDG2SEQ.PDG2Seq import PDG2Seq
|
||||
from model.EXP.EXP9 import EXP as EXP
|
||||
from model.EXP.EXP16 import EXP as EXP
|
||||
|
||||
def model_selector(model):
|
||||
match model['type']:
|
||||
|
|
|
|||
4
run.py
4
run.py
|
|
@ -30,10 +30,12 @@ def main():
|
|||
else:
|
||||
args['device'] = 'cpu'
|
||||
args['model']['device'] = args['device']
|
||||
|
||||
init_seed(args['train']['seed'])
|
||||
# Initialize model
|
||||
model = init_model(args['model'], device=args['device'])
|
||||
|
||||
|
||||
|
||||
if args['mode'] == "benchmark":
|
||||
# 支持计算消耗分析,设置 mode为 benchmark
|
||||
import torch.profiler as profiler
|
||||
|
|
|
|||
Loading…
Reference in New Issue