fix twdgcn config
This commit is contained in:
parent
77a3210475
commit
c4414dd5d9
|
|
@ -5,11 +5,11 @@ basic:
|
|||
model: TWDGCN
|
||||
seed: 2023
|
||||
data:
|
||||
batch_size: 16
|
||||
batch_size: 64
|
||||
column_wise: false
|
||||
days_per_week: 7
|
||||
horizon: 24
|
||||
input_dim: 6
|
||||
input_dim: 1
|
||||
lag: 24
|
||||
normalizer: std
|
||||
num_nodes: 35
|
||||
|
|
@ -19,14 +19,16 @@ data:
|
|||
model:
|
||||
cheb_order: 2
|
||||
embed_dim: 12
|
||||
input_dim: 6
|
||||
horizon: 24
|
||||
input_dim: 1
|
||||
num_layers: 1
|
||||
output_dim: 6
|
||||
num_nodes: 35
|
||||
output_dim: 1
|
||||
rnn_units: 64
|
||||
use_day: true
|
||||
use_week: false
|
||||
train:
|
||||
batch_size: 16
|
||||
batch_size: 64
|
||||
debug: false
|
||||
early_stop: true
|
||||
early_stop_patience: 15
|
||||
|
|
@ -38,10 +40,10 @@ train:
|
|||
lr_decay_rate: 0.3
|
||||
lr_decay_step: 5,20,40,70
|
||||
lr_init: 0.003
|
||||
mae_thresh: ''
|
||||
mae_thresh: 0.001
|
||||
mape_thresh: 0.0
|
||||
max_grad_norm: 5
|
||||
output_dim: 6
|
||||
output_dim: 1
|
||||
plot: false
|
||||
real_value: true
|
||||
seed: 10
|
||||
|
|
|
|||
|
|
@ -19,8 +19,10 @@ data:
|
|||
model:
|
||||
cheb_order: 2
|
||||
embed_dim: 12
|
||||
horizon: 24
|
||||
input_dim: 1
|
||||
num_layers: 1
|
||||
num_nodes: 1024
|
||||
output_dim: 1
|
||||
rnn_units: 64
|
||||
use_day: true
|
||||
|
|
@ -38,7 +40,7 @@ train:
|
|||
lr_decay_rate: 0.3
|
||||
lr_decay_step: 5,20,40,70
|
||||
lr_init: 0.003
|
||||
mae_thresh: ''
|
||||
mae_thresh: 0.0
|
||||
mape_thresh: 0.0
|
||||
max_grad_norm: 5
|
||||
output_dim: 1
|
||||
|
|
|
|||
|
|
@ -19,8 +19,10 @@ data:
|
|||
model:
|
||||
cheb_order: 2
|
||||
embed_dim: 12
|
||||
horizon: 24
|
||||
input_dim: 1
|
||||
num_layers: 1
|
||||
num_nodes: 1024
|
||||
output_dim: 1
|
||||
rnn_units: 64
|
||||
use_day: true
|
||||
|
|
@ -38,7 +40,7 @@ train:
|
|||
lr_decay_rate: 0.3
|
||||
lr_decay_step: 5,20,40,70
|
||||
lr_init: 0.003
|
||||
mae_thresh: ''
|
||||
mae_thresh: 0.0
|
||||
mape_thresh: 0.0
|
||||
max_grad_norm: 5
|
||||
output_dim: 1
|
||||
|
|
|
|||
|
|
@ -25,6 +25,7 @@ model:
|
|||
horizon: 12
|
||||
input_dim: 1
|
||||
num_layers: 1
|
||||
num_nodes: 13
|
||||
output_dim: 1
|
||||
rnn_units: 32
|
||||
use_day: true
|
||||
|
|
|
|||
|
|
@ -8,9 +8,9 @@ data:
|
|||
batch_size: 16
|
||||
column_wise: false
|
||||
days_per_week: 7
|
||||
horizon: 12
|
||||
horizon: 24
|
||||
input_dim: 1
|
||||
lag: 12
|
||||
lag: 24
|
||||
normalizer: std
|
||||
num_nodes: 207
|
||||
steps_per_day: 288
|
||||
|
|
@ -19,8 +19,10 @@ data:
|
|||
model:
|
||||
cheb_order: 2
|
||||
embed_dim: 12
|
||||
horizon: 24
|
||||
input_dim: 1
|
||||
num_layers: 1
|
||||
num_nodes: 207
|
||||
output_dim: 1
|
||||
rnn_units: 64
|
||||
use_day: true
|
||||
|
|
@ -38,7 +40,7 @@ train:
|
|||
lr_decay_rate: 0.3
|
||||
lr_decay_step: 5,20,40,70
|
||||
lr_init: 0.003
|
||||
mae_thresh: ''
|
||||
mae_thresh: 0.0
|
||||
mape_thresh: 0.0
|
||||
max_grad_norm: 5
|
||||
output_dim: 1
|
||||
|
|
|
|||
|
|
@ -8,19 +8,21 @@ data:
|
|||
batch_size: 32
|
||||
column_wise: false
|
||||
days_per_week: 7
|
||||
horizon: 24
|
||||
horizon: 12
|
||||
input_dim: 1
|
||||
lag: 24
|
||||
lag: 12
|
||||
normalizer: std
|
||||
num_nodes: 1024
|
||||
num_nodes: 128
|
||||
steps_per_day: 48
|
||||
test_ratio: 0.2
|
||||
val_ratio: 0.2
|
||||
model:
|
||||
cheb_order: 2
|
||||
embed_dim: 12
|
||||
horizon: 12
|
||||
input_dim: 1
|
||||
num_layers: 1
|
||||
num_nodes: 128
|
||||
output_dim: 1
|
||||
rnn_units: 64
|
||||
use_day: true
|
||||
|
|
@ -38,8 +40,8 @@ train:
|
|||
lr_decay_rate: 0.3
|
||||
lr_decay_step: 5,20,40,70
|
||||
lr_init: 0.003
|
||||
mae_thresh: ''
|
||||
mape_thresh: 0.0
|
||||
mae_thresh: 0.0
|
||||
mape_thresh: 0.001
|
||||
max_grad_norm: 5
|
||||
output_dim: 1
|
||||
plot: false
|
||||
|
|
|
|||
|
|
@ -8,19 +8,21 @@ data:
|
|||
batch_size: 32
|
||||
column_wise: false
|
||||
days_per_week: 7
|
||||
horizon: 24
|
||||
horizon: 12
|
||||
input_dim: 1
|
||||
lag: 24
|
||||
lag: 12
|
||||
normalizer: std
|
||||
num_nodes: 1024
|
||||
num_nodes: 128
|
||||
steps_per_day: 48
|
||||
test_ratio: 0.2
|
||||
val_ratio: 0.2
|
||||
model:
|
||||
cheb_order: 2
|
||||
embed_dim: 12
|
||||
horizon: 12
|
||||
input_dim: 1
|
||||
num_layers: 1
|
||||
num_nodes: 128
|
||||
output_dim: 1
|
||||
rnn_units: 64
|
||||
use_day: true
|
||||
|
|
@ -38,8 +40,8 @@ train:
|
|||
lr_decay_rate: 0.3
|
||||
lr_decay_step: 5,20,40,70
|
||||
lr_init: 0.003
|
||||
mae_thresh: ''
|
||||
mape_thresh: 0.0
|
||||
mae_thresh: 0.0
|
||||
mape_thresh: 0.001
|
||||
max_grad_norm: 5
|
||||
output_dim: 1
|
||||
plot: false
|
||||
|
|
|
|||
|
|
@ -21,8 +21,10 @@ data:
|
|||
model:
|
||||
cheb_order: 2
|
||||
embed_dim: 12
|
||||
horizon: 12
|
||||
input_dim: 1
|
||||
num_layers: 1
|
||||
num_nodes: 358
|
||||
output_dim: 1
|
||||
rnn_units: 64
|
||||
use_day: true
|
||||
|
|
|
|||
|
|
@ -21,8 +21,10 @@ data:
|
|||
model:
|
||||
cheb_order: 2
|
||||
embed_dim: 12
|
||||
horizon: 12
|
||||
input_dim: 1
|
||||
num_layers: 1
|
||||
num_nodes: 307
|
||||
output_dim: 1
|
||||
rnn_units: 64
|
||||
use_day: true
|
||||
|
|
@ -41,8 +43,8 @@ train:
|
|||
lr_decay_rate: 0.3
|
||||
lr_decay_step: 5,20,40,70
|
||||
lr_init: 0.003
|
||||
mae_thresh:
|
||||
mape_thresh: 0.0
|
||||
mae_thresh: 0.0
|
||||
mape_thresh: 0.001
|
||||
max_grad_norm: 5
|
||||
output_dim: 1
|
||||
plot: false
|
||||
|
|
|
|||
|
|
@ -21,8 +21,10 @@ data:
|
|||
model:
|
||||
cheb_order: 2
|
||||
embed_dim: 12
|
||||
horizon: 12
|
||||
input_dim: 1
|
||||
num_layers: 1
|
||||
num_nodes: 883
|
||||
output_dim: 1
|
||||
rnn_units: 64
|
||||
use_day: true
|
||||
|
|
|
|||
|
|
@ -21,8 +21,10 @@ data:
|
|||
model:
|
||||
cheb_order: 2
|
||||
embed_dim: 12
|
||||
horizon: 12
|
||||
input_dim: 1
|
||||
num_layers: 1
|
||||
num_nodes: 170
|
||||
output_dim: 1
|
||||
rnn_units: 64
|
||||
use_day: true
|
||||
|
|
|
|||
|
|
@ -5,11 +5,11 @@ basic:
|
|||
model: TWDGCN
|
||||
seed: 2023
|
||||
data:
|
||||
batch_size: 16
|
||||
batch_size: 64
|
||||
column_wise: false
|
||||
days_per_week: 7
|
||||
horizon: 24
|
||||
input_dim: 137
|
||||
input_dim: 1
|
||||
lag: 24
|
||||
normalizer: std
|
||||
num_nodes: 137
|
||||
|
|
@ -19,14 +19,16 @@ data:
|
|||
model:
|
||||
cheb_order: 2
|
||||
embed_dim: 12
|
||||
input_dim: 137
|
||||
horizon: 24
|
||||
input_dim: 1
|
||||
num_layers: 1
|
||||
output_dim: 137
|
||||
num_nodes: 137
|
||||
output_dim: 1
|
||||
rnn_units: 64
|
||||
use_day: true
|
||||
use_week: false
|
||||
train:
|
||||
batch_size: 16
|
||||
batch_size: 64
|
||||
debug: false
|
||||
early_stop: true
|
||||
early_stop_patience: 15
|
||||
|
|
@ -38,10 +40,10 @@ train:
|
|||
lr_decay_rate: 0.3
|
||||
lr_decay_step: 5,20,40,70
|
||||
lr_init: 0.003
|
||||
mae_thresh: ''
|
||||
mape_thresh: 0.0
|
||||
mae_thresh: 0.0
|
||||
mape_thresh: 0.001
|
||||
max_grad_norm: 5
|
||||
output_dim: 137
|
||||
output_dim: 1
|
||||
plot: false
|
||||
real_value: true
|
||||
seed: 10
|
||||
|
|
|
|||
|
|
@ -89,7 +89,6 @@ class TWDGCN(nn.Module):
|
|||
self.num_layers = args["num_layers"]
|
||||
self.use_day = args["use_day"]
|
||||
self.use_week = args["use_week"]
|
||||
self.default_graph = args["default_graph"]
|
||||
|
||||
self.node_embeddings1 = nn.Parameter(
|
||||
torch.randn(self.num_node, args["embed_dim"]), requires_grad=True
|
||||
|
|
@ -154,17 +153,17 @@ class TWDGCN(nn.Module):
|
|||
node_embedding1 = self.node_embeddings1
|
||||
|
||||
if self.use_day:
|
||||
t_i_d_data = source[..., 1]
|
||||
t_i_d_data = source[..., -2]
|
||||
T_i_D_emb = self.T_i_D_emb[(t_i_d_data * 288).long()]
|
||||
node_embedding1 = node_embedding1 * T_i_D_emb
|
||||
|
||||
if self.use_week:
|
||||
d_i_w_data = source[..., 2]
|
||||
d_i_w_data = source[..., -1]
|
||||
D_i_W_emb = self.D_i_W_emb[d_i_w_data.long()]
|
||||
node_embedding1 = node_embedding1 * D_i_W_emb
|
||||
|
||||
node_embeddings = [node_embedding1, self.node_embeddings1]
|
||||
source = source[..., 0].unsqueeze(-1)
|
||||
source = source[..., 0:self.input_dim]
|
||||
|
||||
init_state1 = self.encoder1.init_hidden(source.shape[0])
|
||||
output, _ = self.encoder1(source, init_state1, node_embeddings)
|
||||
|
|
|
|||
Loading…
Reference in New Issue