Merge remote-tracking branch 'origin/main'
# Conflicts: # model/model_selector.py
This commit is contained in:
commit
e826240a5e
|
|
@ -7,6 +7,7 @@ experiments/
|
|||
*.pkl
|
||||
data/
|
||||
pretrain/
|
||||
pre-train/
|
||||
|
||||
# ---> Python
|
||||
# Byte-compiled / optimized / DLL files
|
||||
|
|
|
|||
|
|
@ -0,0 +1,66 @@
|
|||
data:
|
||||
num_nodes: 358
|
||||
lag: 12
|
||||
horizon: 12
|
||||
val_ratio: 0.2
|
||||
test_ratio: 0.2
|
||||
tod: False
|
||||
normalizer: std
|
||||
column_wise: False
|
||||
default_graph: True
|
||||
add_time_in_day: True
|
||||
add_day_in_week: True
|
||||
steps_per_day: 288
|
||||
days_per_week: 7
|
||||
|
||||
model:
|
||||
input_dim: 1
|
||||
output_dim: 1
|
||||
input_window: 12
|
||||
output_window: 12
|
||||
gcn_true: true
|
||||
buildA_true: true
|
||||
gcn_depth: 2
|
||||
dropout: 0.3
|
||||
subgraph_size: 20
|
||||
node_dim: 40
|
||||
dilation_exponential: 1
|
||||
conv_channels: 32
|
||||
residual_channels: 32
|
||||
skip_channels: 64
|
||||
end_channels: 128
|
||||
layers: 3
|
||||
propalpha: 0.05
|
||||
tanhalpha: 3
|
||||
layer_norm_affline: true
|
||||
use_curriculum_learning: true
|
||||
step_size1: 2500
|
||||
task_level: 0
|
||||
num_split: 1
|
||||
step_size2: 100
|
||||
model_type: stmlp
|
||||
|
||||
train:
|
||||
loss_func: mae
|
||||
seed: 10
|
||||
batch_size: 64
|
||||
epochs: 300
|
||||
lr_init: 0.003
|
||||
weight_decay: 0
|
||||
lr_decay: False
|
||||
lr_decay_rate: 0.3
|
||||
lr_decay_step: "5,20,40,70"
|
||||
early_stop: True
|
||||
early_stop_patience: 15
|
||||
grad_norm: False
|
||||
max_grad_norm: 5
|
||||
real_value: True
|
||||
teacher_stu: True
|
||||
|
||||
test:
|
||||
mae_thresh: null
|
||||
mape_thresh: 0.0
|
||||
|
||||
log:
|
||||
log_step: 2000
|
||||
plot: False
|
||||
|
|
@ -0,0 +1,67 @@
|
|||
data:
|
||||
num_nodes: 307
|
||||
lag: 12
|
||||
horizon: 12
|
||||
val_ratio: 0.2
|
||||
test_ratio: 0.2
|
||||
tod: False
|
||||
normalizer: std
|
||||
column_wise: False
|
||||
default_graph: True
|
||||
add_time_in_day: True
|
||||
add_day_in_week: True
|
||||
steps_per_day: 288
|
||||
days_per_week: 7
|
||||
|
||||
model:
|
||||
input_dim: 1
|
||||
output_dim: 1
|
||||
input_window: 12
|
||||
output_window: 12
|
||||
gcn_true: true
|
||||
buildA_true: true
|
||||
gcn_depth: 2
|
||||
dropout: 0.3
|
||||
subgraph_size: 20
|
||||
node_dim: 40
|
||||
dilation_exponential: 1
|
||||
conv_channels: 32
|
||||
residual_channels: 32
|
||||
skip_channels: 64
|
||||
end_channels: 128
|
||||
layers: 3
|
||||
propalpha: 0.05
|
||||
tanhalpha: 3
|
||||
layer_norm_affline: true
|
||||
use_curriculum_learning: true
|
||||
step_size1: 2500
|
||||
task_level: 0
|
||||
num_split: 1
|
||||
step_size2: 100
|
||||
model_type: stmlp
|
||||
|
||||
train:
|
||||
loss_func: mae
|
||||
seed: 10
|
||||
batch_size: 64
|
||||
epochs: 300
|
||||
lr_init: 0.003
|
||||
weight_decay: 0
|
||||
lr_decay: False
|
||||
lr_decay_rate: 0.3
|
||||
lr_decay_step: "5,20,40,70"
|
||||
early_stop: True
|
||||
early_stop_patience: 15
|
||||
grad_norm: False
|
||||
max_grad_norm: 5
|
||||
real_value: True
|
||||
teacher: True
|
||||
teacher_stu: True
|
||||
|
||||
test:
|
||||
mae_thresh: null
|
||||
mape_thresh: 0.0
|
||||
|
||||
log:
|
||||
log_step: 2000
|
||||
plot: False
|
||||
|
|
@ -0,0 +1,66 @@
|
|||
data:
|
||||
num_nodes: 883
|
||||
lag: 12
|
||||
horizon: 12
|
||||
val_ratio: 0.2
|
||||
test_ratio: 0.2
|
||||
tod: False
|
||||
normalizer: std
|
||||
column_wise: False
|
||||
default_graph: True
|
||||
add_time_in_day: True
|
||||
add_day_in_week: True
|
||||
steps_per_day: 288
|
||||
days_per_week: 7
|
||||
|
||||
model:
|
||||
input_dim: 1
|
||||
output_dim: 1
|
||||
input_window: 12
|
||||
output_window: 12
|
||||
gcn_true: true
|
||||
buildA_true: true
|
||||
gcn_depth: 2
|
||||
dropout: 0.3
|
||||
subgraph_size: 20
|
||||
node_dim: 40
|
||||
dilation_exponential: 1
|
||||
conv_channels: 32
|
||||
residual_channels: 32
|
||||
skip_channels: 64
|
||||
end_channels: 128
|
||||
layers: 3
|
||||
propalpha: 0.05
|
||||
tanhalpha: 3
|
||||
layer_norm_affline: true
|
||||
use_curriculum_learning: true
|
||||
step_size1: 2500
|
||||
task_level: 0
|
||||
num_split: 1
|
||||
step_size2: 100
|
||||
model_type: stmlp
|
||||
|
||||
train:
|
||||
loss_func: mae
|
||||
seed: 10
|
||||
batch_size: 16
|
||||
epochs: 300
|
||||
lr_init: 0.003
|
||||
weight_decay: 0
|
||||
lr_decay: False
|
||||
lr_decay_rate: 0.3
|
||||
lr_decay_step: "5,20,40,70"
|
||||
early_stop: True
|
||||
early_stop_patience: 15
|
||||
grad_norm: False
|
||||
max_grad_norm: 5
|
||||
real_value: True
|
||||
teacher_stu: True
|
||||
|
||||
test:
|
||||
mae_thresh: null
|
||||
mape_thresh: 0.0
|
||||
|
||||
log:
|
||||
log_step: 2000
|
||||
plot: False
|
||||
|
|
@ -0,0 +1,66 @@
|
|||
data:
|
||||
num_nodes: 170
|
||||
lag: 12
|
||||
horizon: 12
|
||||
val_ratio: 0.2
|
||||
test_ratio: 0.2
|
||||
tod: False
|
||||
normalizer: std
|
||||
column_wise: False
|
||||
default_graph: True
|
||||
add_time_in_day: True
|
||||
add_day_in_week: True
|
||||
steps_per_day: 288
|
||||
days_per_week: 7
|
||||
|
||||
model:
|
||||
input_dim: 1
|
||||
output_dim: 1
|
||||
input_window: 12
|
||||
output_window: 12
|
||||
gcn_true: true
|
||||
buildA_true: true
|
||||
gcn_depth: 2
|
||||
dropout: 0.3
|
||||
subgraph_size: 20
|
||||
node_dim: 40
|
||||
dilation_exponential: 1
|
||||
conv_channels: 32
|
||||
residual_channels: 32
|
||||
skip_channels: 64
|
||||
end_channels: 128
|
||||
layers: 3
|
||||
propalpha: 0.05
|
||||
tanhalpha: 3
|
||||
layer_norm_affline: true
|
||||
use_curriculum_learning: true
|
||||
step_size1: 2500
|
||||
task_level: 0
|
||||
num_split: 1
|
||||
step_size2: 100
|
||||
model_type: stmlp
|
||||
|
||||
train:
|
||||
loss_func: mae
|
||||
seed: 10
|
||||
batch_size: 64
|
||||
epochs: 300
|
||||
lr_init: 0.003
|
||||
weight_decay: 0
|
||||
lr_decay: False
|
||||
lr_decay_rate: 0.3
|
||||
lr_decay_step: "5,20,40,70"
|
||||
early_stop: True
|
||||
early_stop_patience: 15
|
||||
grad_norm: False
|
||||
max_grad_norm: 5
|
||||
real_value: True
|
||||
teacher_stu: True
|
||||
|
||||
test:
|
||||
mae_thresh: null
|
||||
mape_thresh: 0.0
|
||||
|
||||
log:
|
||||
log_step: 2000
|
||||
plot: False
|
||||
|
|
@ -121,7 +121,7 @@ def download_kaggle_data(current_dir):
|
|||
如果目标文件夹已存在,会覆盖冲突的文件。
|
||||
"""
|
||||
try:
|
||||
print("正在下载 KaggleHub 数据集...")
|
||||
print("正在下载 PEMS 数据集...")
|
||||
path = kagglehub.dataset_download("elmahy/pems-dataset")
|
||||
# print("Path to KaggleHub dataset files:", path)
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,307 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn import init
|
||||
from data.get_adj import get_adj
|
||||
import numbers
|
||||
|
||||
|
||||
# --- 基础算子 ---
|
||||
class NConv(nn.Module):
|
||||
def forward(self, x, adj):
|
||||
return torch.einsum('ncwl,vw->ncvl', (x, adj)).contiguous()
|
||||
|
||||
|
||||
class DyNconv(nn.Module):
|
||||
def forward(self, x, adj):
|
||||
return torch.einsum('ncvl,nvwl->ncwl', (x, adj)).contiguous()
|
||||
|
||||
|
||||
class Linear(nn.Module):
|
||||
def __init__(self, c_in, c_out, bias=True):
|
||||
super().__init__()
|
||||
self.mlp = nn.Conv2d(c_in, c_out, kernel_size=1, bias=bias)
|
||||
|
||||
def forward(self, x):
|
||||
return self.mlp(x)
|
||||
|
||||
|
||||
class Prop(nn.Module):
|
||||
def __init__(self, c_in, c_out, gdep, dropout, alpha):
|
||||
super().__init__()
|
||||
self.nconv = NConv()
|
||||
self.mlp = Linear(c_in, c_out)
|
||||
self.gdep, self.dropout, self.alpha = gdep, dropout, alpha
|
||||
|
||||
def forward(self, x, adj):
|
||||
adj = adj + torch.eye(adj.size(0), device=x.device)
|
||||
d = adj.sum(1)
|
||||
a = adj / d.view(-1, 1)
|
||||
h = x
|
||||
for _ in range(self.gdep):
|
||||
h = self.alpha * x + (1 - self.alpha) * self.nconv(h, a)
|
||||
return self.mlp(h)
|
||||
|
||||
|
||||
class MixProp(nn.Module):
|
||||
def __init__(self, c_in, c_out, gdep, dropout, alpha):
|
||||
super().__init__()
|
||||
self.nconv = NConv()
|
||||
self.mlp = Linear((gdep + 1) * c_in, c_out)
|
||||
self.gdep, self.dropout, self.alpha = gdep, dropout, alpha
|
||||
|
||||
def forward(self, x, adj):
|
||||
adj = adj + torch.eye(adj.size(0), device=x.device)
|
||||
d = adj.sum(1)
|
||||
a = adj / d.view(-1, 1)
|
||||
out = [x]
|
||||
h = x
|
||||
for _ in range(self.gdep):
|
||||
h = self.alpha * x + (1 - self.alpha) * self.nconv(h, a)
|
||||
out.append(h)
|
||||
return self.mlp(torch.cat(out, dim=1))
|
||||
|
||||
|
||||
class DyMixprop(nn.Module):
|
||||
def __init__(self, c_in, c_out, gdep, dropout, alpha):
|
||||
super().__init__()
|
||||
self.nconv = DyNconv()
|
||||
self.mlp1 = Linear((gdep + 1) * c_in, c_out)
|
||||
self.mlp2 = Linear((gdep + 1) * c_in, c_out)
|
||||
self.gdep, self.dropout, self.alpha = gdep, dropout, alpha
|
||||
self.lin1, self.lin2 = Linear(c_in, c_in), Linear(c_in, c_in)
|
||||
|
||||
def forward(self, x):
|
||||
x1 = torch.tanh(self.lin1(x))
|
||||
x2 = torch.tanh(self.lin2(x))
|
||||
adj = self.nconv(x1.transpose(2, 1), x2)
|
||||
adj0 = torch.softmax(adj, dim=2)
|
||||
adj1 = torch.softmax(adj.transpose(2, 1), dim=2)
|
||||
# 两条分支
|
||||
out1, out2 = [x], [x]
|
||||
h = x
|
||||
for _ in range(self.gdep):
|
||||
h = self.alpha * x + (1 - self.alpha) * self.nconv(h, adj0)
|
||||
out1.append(h)
|
||||
h = x
|
||||
for _ in range(self.gdep):
|
||||
h = self.alpha * x + (1 - self.alpha) * self.nconv(h, adj1)
|
||||
out2.append(h)
|
||||
return self.mlp1(torch.cat(out1, dim=1)) + self.mlp2(torch.cat(out2, dim=1))
|
||||
|
||||
|
||||
class DilatedInception(nn.Module):
|
||||
def __init__(self, cin, cout, dilation_factor=2):
|
||||
super().__init__()
|
||||
self.kernels = [2, 3, 6, 7]
|
||||
cout_each = int(cout / len(self.kernels))
|
||||
self.convs = nn.ModuleList([nn.Conv2d(cin, cout_each, kernel_size=(1, k), dilation=(1, dilation_factor))
|
||||
for k in self.kernels])
|
||||
|
||||
def forward(self, x):
|
||||
outs = [conv(x)[..., -self.convs[-1](x).size(3):] for conv in self.convs]
|
||||
return torch.cat(outs, dim=1)
|
||||
|
||||
|
||||
class GraphConstructor(nn.Module):
|
||||
def __init__(self, nnodes, k, dim, device, alpha=3, static_feat=None):
|
||||
super().__init__()
|
||||
self.nnodes, self.k, self.dim, self.alpha, self.device = nnodes, k, dim, alpha, device
|
||||
self.static_feat = static_feat
|
||||
if static_feat is not None:
|
||||
xd = static_feat.shape[1]
|
||||
self.lin1, self.lin2 = nn.Linear(xd, dim), nn.Linear(xd, dim)
|
||||
else:
|
||||
self.emb1 = nn.Embedding(nnodes, dim)
|
||||
self.emb2 = nn.Embedding(nnodes, dim)
|
||||
self.lin1, self.lin2 = nn.Linear(dim, dim), nn.Linear(dim, dim)
|
||||
|
||||
def forward(self, idx):
|
||||
if self.static_feat is None:
|
||||
vec1, vec2 = self.emb1(idx), self.emb2(idx)
|
||||
else:
|
||||
vec1 = vec2 = self.static_feat[idx, :]
|
||||
vec1 = torch.tanh(self.alpha * self.lin1(vec1))
|
||||
vec2 = torch.tanh(self.alpha * self.lin2(vec2))
|
||||
a = torch.mm(vec1, vec2.transpose(1, 0)) - torch.mm(vec2, vec1.transpose(1, 0))
|
||||
adj = F.relu(torch.tanh(self.alpha * a))
|
||||
mask = torch.zeros(idx.size(0), idx.size(0), device=self.device)
|
||||
s1, t1 = adj.topk(self.k, 1)
|
||||
mask.scatter_(1, t1, s1.new_ones(s1.size()))
|
||||
return adj * mask
|
||||
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
__constants__ = ['normalized_shape', 'eps', 'elementwise_affine']
|
||||
|
||||
def __init__(self, normalized_shape, eps=1e-5, elementwise_affine=True):
|
||||
super().__init__()
|
||||
if isinstance(normalized_shape, numbers.Integral):
|
||||
normalized_shape = (normalized_shape,)
|
||||
self.normalized_shape, self.eps, self.elementwise_affine = tuple(normalized_shape), eps, elementwise_affine
|
||||
if elementwise_affine:
|
||||
self.weight = nn.Parameter(torch.Tensor(*normalized_shape))
|
||||
self.bias = nn.Parameter(torch.Tensor(*normalized_shape))
|
||||
init.ones_(self.weight);
|
||||
init.zeros_(self.bias)
|
||||
else:
|
||||
self.register_parameter('weight', None)
|
||||
self.register_parameter('bias', None)
|
||||
|
||||
def forward(self, x, idx):
|
||||
if self.elementwise_affine:
|
||||
return F.layer_norm(x, tuple(x.shape[1:]), self.weight[:, idx, :], self.bias[:, idx, :], self.eps)
|
||||
else:
|
||||
return F.layer_norm(x, tuple(x.shape[1:]), self.weight, self.bias, self.eps)
|
||||
|
||||
def extra_repr(self):
|
||||
return f'{self.normalized_shape}, eps={self.eps}, elementwise_affine={self.elementwise_affine}'
|
||||
|
||||
|
||||
# --- 合并后的模型类,支持 teacher 与 stmlp 两种分支 ---
|
||||
class STMLP(nn.Module):
|
||||
def __init__(self, args):
|
||||
super().__init__()
|
||||
# 参数从字典中读取
|
||||
self.adj_mx = get_adj(args)
|
||||
self.num_nodes = args['num_nodes']
|
||||
self.feature_dim = args['input_dim']
|
||||
|
||||
self.input_window = args['input_window']
|
||||
self.output_window = args['output_window']
|
||||
self.output_dim = args['output_dim']
|
||||
self.device = args['device']
|
||||
|
||||
self.gcn_true = args['gcn_true']
|
||||
self.buildA_true = args['buildA_true']
|
||||
self.gcn_depth = args['gcn_depth']
|
||||
self.dropout = args['dropout']
|
||||
self.subgraph_size = args['subgraph_size']
|
||||
self.node_dim = args['node_dim']
|
||||
self.dilation_exponential = args['dilation_exponential']
|
||||
|
||||
self.conv_channels = args['conv_channels']
|
||||
self.residual_channels = args['residual_channels']
|
||||
self.skip_channels = args['skip_channels']
|
||||
self.end_channels = args['end_channels']
|
||||
|
||||
self.layers = args['layers']
|
||||
self.propalpha = args['propalpha']
|
||||
self.tanhalpha = args['tanhalpha']
|
||||
self.layer_norm_affline = args['layer_norm_affline']
|
||||
|
||||
self.model_type = args['model_type'] # 'teacher' 或 'stmlp'
|
||||
self.idx = torch.arange(self.num_nodes).to(self.device)
|
||||
self.predefined_A = None if self.adj_mx is None else (torch.tensor(self.adj_mx) - torch.eye(self.num_nodes)).to(
|
||||
self.device)
|
||||
self.static_feat = None
|
||||
|
||||
# transformer(保留原有结构)
|
||||
self.encoder_layer = nn.TransformerEncoderLayer(d_model=12, nhead=4, batch_first=True)
|
||||
self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=3)
|
||||
|
||||
# 构建各层
|
||||
self.start_conv = nn.Conv2d(self.feature_dim, self.residual_channels, kernel_size=1)
|
||||
self.gc = GraphConstructor(self.num_nodes, self.subgraph_size, self.node_dim, self.device, alpha=self.tanhalpha,
|
||||
static_feat=self.static_feat)
|
||||
# 计算 receptive_field
|
||||
kernel_size = 7
|
||||
if self.dilation_exponential > 1:
|
||||
self.receptive_field = int(
|
||||
self.output_dim + (kernel_size - 1) * (self.dilation_exponential ** self.layers - 1) / (
|
||||
self.dilation_exponential - 1))
|
||||
else:
|
||||
self.receptive_field = self.layers * (kernel_size - 1) + self.output_dim
|
||||
|
||||
self.filter_convs = nn.ModuleList()
|
||||
self.gate_convs = nn.ModuleList()
|
||||
self.residual_convs = nn.ModuleList()
|
||||
self.skip_convs = nn.ModuleList()
|
||||
self.norm = nn.ModuleList()
|
||||
self.stu_mlp = nn.ModuleList([nn.Sequential(nn.Linear(c, c), nn.Linear(c, c), nn.Linear(c, c))
|
||||
for c in [13, 7, 1]])
|
||||
if self.gcn_true:
|
||||
self.gconv1 = nn.ModuleList()
|
||||
self.gconv2 = nn.ModuleList()
|
||||
|
||||
new_dilation = 1
|
||||
for i in range(1):
|
||||
rf_size_i = int(1 + i * (kernel_size - 1) * (self.dilation_exponential ** self.layers - 1) / (
|
||||
self.dilation_exponential - 1)) if self.dilation_exponential > 1 else i * self.layers * (
|
||||
kernel_size - 1) + 1
|
||||
for j in range(1, self.layers + 1):
|
||||
rf_size_j = int(rf_size_i + (kernel_size - 1) * (self.dilation_exponential ** j - 1) / (
|
||||
self.dilation_exponential - 1)) if self.dilation_exponential > 1 else rf_size_i + j * (
|
||||
kernel_size - 1)
|
||||
self.filter_convs.append(
|
||||
DilatedInception(self.residual_channels, self.conv_channels, dilation_factor=new_dilation))
|
||||
self.gate_convs.append(
|
||||
DilatedInception(self.residual_channels, self.conv_channels, dilation_factor=new_dilation))
|
||||
self.residual_convs.append(nn.Conv2d(self.conv_channels, self.residual_channels, kernel_size=1))
|
||||
k_size = (1, self.input_window - rf_size_j + 1) if self.input_window > self.receptive_field else (
|
||||
1, self.receptive_field - rf_size_j + 1)
|
||||
self.skip_convs.append(nn.Conv2d(self.conv_channels, self.skip_channels, kernel_size=k_size))
|
||||
if self.gcn_true:
|
||||
self.gconv1.append(MixProp(self.conv_channels, self.residual_channels, self.gcn_depth, self.dropout,
|
||||
self.propalpha))
|
||||
self.gconv2.append(MixProp(self.conv_channels, self.residual_channels, self.gcn_depth, self.dropout,
|
||||
self.propalpha))
|
||||
norm_size = (self.residual_channels, self.num_nodes,
|
||||
self.input_window - rf_size_j + 1) if self.input_window > self.receptive_field else (
|
||||
self.residual_channels, self.num_nodes, self.receptive_field - rf_size_j + 1)
|
||||
self.norm.append(LayerNorm(norm_size, elementwise_affine=self.layer_norm_affline))
|
||||
new_dilation *= self.dilation_exponential
|
||||
|
||||
self.end_conv_1 = nn.Conv2d(self.skip_channels, self.end_channels, kernel_size=1, bias=True)
|
||||
self.end_conv_2 = nn.Conv2d(self.end_channels, self.output_window, kernel_size=1, bias=True)
|
||||
k0 = (1, self.input_window) if self.input_window > self.receptive_field else (1, self.receptive_field)
|
||||
self.skip0 = nn.Conv2d(self.feature_dim, self.skip_channels, kernel_size=k0, bias=True)
|
||||
kE = (1, self.input_window - self.receptive_field + 1) if self.input_window > self.receptive_field else (1, 1)
|
||||
self.skipE = nn.Conv2d(self.residual_channels, self.skip_channels, kernel_size=kE, bias=True)
|
||||
# 最后输出分支,根据模型类型选择不同的头
|
||||
if self.model_type == 'teacher':
|
||||
self.tt_linear1 = nn.Linear(self.residual_channels, self.input_window)
|
||||
self.tt_linear2 = nn.Linear(1, 32)
|
||||
self.ss_linear1 = nn.Linear(self.residual_channels, self.input_window)
|
||||
self.ss_linear2 = nn.Linear(1, 32)
|
||||
else: # stmlp
|
||||
self.out_linear1 = nn.Linear(self.residual_channels, self.input_window)
|
||||
self.out_linear2 = nn.Linear(1, 32)
|
||||
|
||||
def forward(self, source, idx=None):
|
||||
source = source[..., 0:1]
|
||||
sout, tout = [], []
|
||||
inputs = source.transpose(1, 3)
|
||||
assert inputs.size(3) == self.input_window, 'input sequence length mismatch'
|
||||
if self.input_window < self.receptive_field:
|
||||
inputs = F.pad(inputs, (self.receptive_field - self.input_window, 0, 0, 0))
|
||||
if self.gcn_true:
|
||||
adp = self.gc(self.idx if idx is None else idx) if self.buildA_true else self.predefined_A
|
||||
x = self.start_conv(inputs)
|
||||
skip = self.skip0(F.dropout(inputs, self.dropout, training=self.training))
|
||||
for i in range(self.layers):
|
||||
residual = x
|
||||
filters = torch.tanh(self.filter_convs[i](x))
|
||||
gate = torch.sigmoid(self.gate_convs[i](x))
|
||||
x = F.dropout(filters * gate, self.dropout, training=self.training)
|
||||
tout.append(x)
|
||||
s = self.skip_convs[i](x)
|
||||
skip = s + skip
|
||||
if self.gcn_true:
|
||||
x = self.gconv1[i](x, adp) + self.gconv2[i](x, adp.transpose(1, 0))
|
||||
else:
|
||||
x = self.stu_mlp[i](x)
|
||||
x = x + residual[:, :, :, -x.size(3):]
|
||||
x = self.norm[i](x, self.idx if idx is None else idx)
|
||||
sout.append(x)
|
||||
skip = self.skipE(x) + skip
|
||||
x = F.relu(skip)
|
||||
x = F.relu(self.end_conv_1(x))
|
||||
x = self.end_conv_2(x)
|
||||
if self.model_type == 'teacher':
|
||||
ttout = self.tt_linear2(self.tt_linear1(tout[-1].transpose(1, 3)).transpose(1, 3))
|
||||
ssout = self.ss_linear2(self.ss_linear1(sout[-1].transpose(1, 3)).transpose(1, 3))
|
||||
return x, ttout, ssout
|
||||
else:
|
||||
x_ = self.out_linear2(self.out_linear1(tout[-1].transpose(1, 3)).transpose(1, 3))
|
||||
return x, x_, x
|
||||
|
|
@ -13,8 +13,7 @@ from model.STFGNN.STFGNN import STFGNN
|
|||
from model.STSGCN.STSGCN import STSGCN
|
||||
from model.STGODE.STGODE import ODEGCN
|
||||
from model.PDG2SEQ.PDG2Seq import PDG2Seq
|
||||
from model.STIDGCN.STIDGCN import STIDGCN
|
||||
|
||||
from model.STMLP.STMLP import STMLP
|
||||
|
||||
def model_selector(model):
|
||||
match model['type']:
|
||||
|
|
@ -33,7 +32,5 @@ def model_selector(model):
|
|||
case 'STSGCN': return STSGCN(model)
|
||||
case 'STGODE': return ODEGCN(model)
|
||||
case 'PDG2SEQ': return PDG2Seq(model)
|
||||
case 'STIDGCN': return STIDGCN(model)
|
||||
# case 'EXP': return EXP(model)
|
||||
# case 'EXPB': return EXPB(model)
|
||||
case 'STMLP': return STMLP(model)
|
||||
|
||||
|
|
|
|||
3
run.py
3
run.py
|
|
@ -17,9 +17,6 @@ from dataloader.loader_selector import get_dataloader
|
|||
from trainer.trainer_selector import select_trainer
|
||||
import yaml
|
||||
|
||||
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
|
||||
|
|
|
|||
|
|
@ -160,10 +160,6 @@ class Trainer:
|
|||
y_pred = torch.cat(y_pred, dim=0)
|
||||
y_true = torch.cat(y_true, dim=0)
|
||||
|
||||
# 你在这里需要把y_pred和y_true保存下来
|
||||
# torch.save(y_pred, "./test/PEMS07/y_pred_D.pt") # [3566,12,170,1]
|
||||
# torch.save(y_true, "./test/PEMS08/y_true.pt") # [3566,12,170,1]
|
||||
|
||||
for t in range(y_true.shape[1]):
|
||||
mae, rmse, mape = all_metrics(y_pred[:, t, ...], y_true[:, t, ...],
|
||||
args['mae_thresh'], args['mape_thresh'])
|
||||
|
|
|
|||
|
|
@ -161,10 +161,6 @@ class Trainer:
|
|||
y_pred = torch.cat(y_pred, dim=0)
|
||||
y_true = torch.cat(y_true, dim=0)
|
||||
|
||||
# 你在这里需要把y_pred和y_true保存下来
|
||||
# torch.save(y_pred, "./test/PEMS07/y_pred_D.pt") # [3566,12,170,1]
|
||||
# torch.save(y_true, "./test/PEMS08/y_true.pt") # [3566,12,170,1]
|
||||
|
||||
for t in range(y_true.shape[1]):
|
||||
mae, rmse, mape = all_metrics(y_pred[:, t, ...], y_true[:, t, ...],
|
||||
args['mae_thresh'], args['mape_thresh'])
|
||||
|
|
|
|||
|
|
@ -0,0 +1,261 @@
|
|||
import math
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import copy
|
||||
import torch.nn.functional as F
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from tqdm import tqdm
|
||||
from lib.logger import get_logger
|
||||
from lib.loss_function import all_metrics
|
||||
from model.STMLP.STMLP import STMLP
|
||||
|
||||
|
||||
class Trainer:
|
||||
def __init__(self, model, loss, optimizer, train_loader, val_loader, test_loader,
|
||||
scaler, args, lr_scheduler=None):
|
||||
self.model = model
|
||||
self.loss = loss
|
||||
self.optimizer = optimizer
|
||||
self.train_loader = train_loader
|
||||
self.val_loader = val_loader
|
||||
self.test_loader = test_loader
|
||||
self.scaler = scaler
|
||||
self.args = args['train']
|
||||
self.lr_scheduler = lr_scheduler
|
||||
self.train_per_epoch = len(train_loader)
|
||||
self.val_per_epoch = len(val_loader) if val_loader else 0
|
||||
|
||||
# Paths for saving models and logs
|
||||
self.best_path = os.path.join(self.args['log_dir'], 'best_model.pth')
|
||||
self.best_test_path = os.path.join(self.args['log_dir'], 'best_test_model.pth')
|
||||
self.loss_figure_path = os.path.join(self.args['log_dir'], 'loss.png')
|
||||
self.pretrain_dir = f'./pre-train/{args["model"]["type"]}/{args["data"]["type"]}'
|
||||
self.pretrain_path = os.path.join(self.pretrain_dir, 'best_model.pth')
|
||||
self.pretrain_best_path = os.path.join(self.pretrain_dir, 'best_test_model.pth')
|
||||
|
||||
# Initialize logger
|
||||
if not os.path.isdir(self.args['log_dir']) and not self.args['debug']:
|
||||
os.makedirs(self.args['log_dir'], exist_ok=True)
|
||||
if not os.path.isdir(self.pretrain_dir) and not self.args['debug']:
|
||||
os.makedirs(self.pretrain_dir, exist_ok=True)
|
||||
self.logger = get_logger(self.args['log_dir'], name=self.model.__class__.__name__, debug=self.args['debug'])
|
||||
self.logger.info(f"Experiment log path in: {self.args['log_dir']}")
|
||||
|
||||
if self.args['teacher_stu']:
|
||||
self.tmodel = self.loadTeacher(args)
|
||||
else:
|
||||
self.logger.info(f"当前使用预训练模式,预训练后请移动教师模型到"
|
||||
f"./pre-train/{args['model']['type']}/{args['data']['type']}/best_model.pth"
|
||||
f"然后在config中配置train.teacher_stu模式为True开启蒸馏模式")
|
||||
|
||||
|
||||
def _run_epoch(self, epoch, dataloader, mode):
|
||||
# self.tmodel.eval()
|
||||
if mode == 'train':
|
||||
self.model.train()
|
||||
optimizer_step = True
|
||||
else:
|
||||
self.model.eval()
|
||||
optimizer_step = False
|
||||
|
||||
total_loss = 0
|
||||
epoch_time = time.time()
|
||||
|
||||
with torch.set_grad_enabled(optimizer_step):
|
||||
with tqdm(total=len(dataloader), desc=f'{mode.capitalize()} Epoch {epoch}') as pbar:
|
||||
for batch_idx, (data, target) in enumerate(dataloader):
|
||||
if self.args['teacher_stu']:
|
||||
label = target[..., :self.args['output_dim']]
|
||||
output, out_, _ = self.model(data)
|
||||
gout, tout, sout = self.tmodel(data)
|
||||
|
||||
if self.args['real_value']:
|
||||
output = self.scaler.inverse_transform(output)
|
||||
|
||||
loss1 = self.loss(output, label)
|
||||
scl = self.loss_cls(out_, sout)
|
||||
kl_loss = nn.KLDivLoss(reduction="batchmean", log_target=True).cuda()
|
||||
gout = F.log_softmax(gout, dim=-1).cuda()
|
||||
mlp_emb_ = F.log_softmax(output, dim=-1).cuda()
|
||||
tkloss = kl_loss(mlp_emb_.cuda().float(), gout.cuda().float())
|
||||
loss = loss1 + 10 * tkloss + 1 * scl
|
||||
|
||||
else:
|
||||
label = target[..., :self.args['output_dim']]
|
||||
output, out_, _ = self.model(data)
|
||||
|
||||
if self.args['real_value']:
|
||||
output = self.scaler.inverse_transform(output)
|
||||
|
||||
loss = self.loss(output, label)
|
||||
|
||||
if optimizer_step and self.optimizer is not None:
|
||||
self.optimizer.zero_grad()
|
||||
loss.backward()
|
||||
|
||||
if self.args['grad_norm']:
|
||||
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args['max_grad_norm'])
|
||||
self.optimizer.step()
|
||||
|
||||
total_loss += loss.item()
|
||||
|
||||
if mode == 'train' and (batch_idx + 1) % self.args['log_step'] == 0:
|
||||
self.logger.info(
|
||||
f'Train Epoch {epoch}: {batch_idx + 1}/{len(dataloader)} Loss: {loss.item():.6f}')
|
||||
|
||||
# 更新 tqdm 的进度
|
||||
pbar.update(1)
|
||||
pbar.set_postfix(loss=loss.item())
|
||||
|
||||
avg_loss = total_loss / len(dataloader)
|
||||
self.logger.info(
|
||||
f'{mode.capitalize()} Epoch {epoch}: average Loss: {avg_loss:.6f}, time: {time.time() - epoch_time:.2f} s')
|
||||
return avg_loss
|
||||
|
||||
def train_epoch(self, epoch):
|
||||
return self._run_epoch(epoch, self.train_loader, 'train')
|
||||
|
||||
def val_epoch(self, epoch):
|
||||
return self._run_epoch(epoch, self.val_loader or self.test_loader, 'val')
|
||||
|
||||
def test_epoch(self, epoch):
|
||||
return self._run_epoch(epoch, self.test_loader, 'test')
|
||||
|
||||
def train(self):
|
||||
best_model, best_test_model = None, None
|
||||
best_loss, best_test_loss = float('inf'), float('inf')
|
||||
not_improved_count = 0
|
||||
|
||||
self.logger.info("Training process started")
|
||||
for epoch in range(1, self.args['epochs'] + 1):
|
||||
train_epoch_loss = self.train_epoch(epoch)
|
||||
val_epoch_loss = self.val_epoch(epoch)
|
||||
test_epoch_loss = self.test_epoch(epoch)
|
||||
|
||||
if train_epoch_loss > 1e6:
|
||||
self.logger.warning('Gradient explosion detected. Ending...')
|
||||
break
|
||||
|
||||
if val_epoch_loss < best_loss:
|
||||
best_loss = val_epoch_loss
|
||||
not_improved_count = 0
|
||||
best_model = copy.deepcopy(self.model.state_dict())
|
||||
torch.save(best_model, self.best_path)
|
||||
torch.save(best_model, self.pretrain_path)
|
||||
self.logger.info('Best validation model saved!')
|
||||
else:
|
||||
not_improved_count += 1
|
||||
|
||||
if self.args['early_stop'] and not_improved_count == self.args['early_stop_patience']:
|
||||
self.logger.info(
|
||||
f"Validation performance didn't improve for {self.args['early_stop_patience']} epochs. Training stops.")
|
||||
break
|
||||
|
||||
if test_epoch_loss < best_test_loss:
|
||||
best_test_loss = test_epoch_loss
|
||||
best_test_model = copy.deepcopy(self.model.state_dict())
|
||||
torch.save(best_test_model, self.best_test_path)
|
||||
torch.save(best_model, self.pretrain_best_path)
|
||||
|
||||
if not self.args['debug']:
|
||||
torch.save(best_model, self.best_path)
|
||||
torch.save(best_test_model, self.best_test_path)
|
||||
self.logger.info(f"Best models saved at {self.best_path} and {self.best_test_path}")
|
||||
|
||||
self._finalize_training(best_model, best_test_model)
|
||||
|
||||
def _finalize_training(self, best_model, best_test_model):
|
||||
self.model.load_state_dict(best_model)
|
||||
self.logger.info("Testing on best validation model")
|
||||
self.test(self.model, self.args, self.test_loader, self.scaler, self.logger)
|
||||
|
||||
self.model.load_state_dict(best_test_model)
|
||||
self.logger.info("Testing on best test model")
|
||||
self.test(self.model, self.args, self.test_loader, self.scaler, self.logger)
|
||||
|
||||
def loadTeacher(self, args):
|
||||
model_path = f'./pre-train/{args["model"]["type"]}/{args["data"]["type"]}/best_model.pth'
|
||||
try:
|
||||
# 尝试加载教师模型权重
|
||||
state_dict = torch.load(model_path)
|
||||
self.logger.info(f"成功加载教师模型权重: {model_path}")
|
||||
|
||||
# 初始化并返回教师模型
|
||||
args['model']['model_type'] = 'teacher'
|
||||
tmodel = STMLP(args['model'])
|
||||
tmodel = tmodel.to(args['device'])
|
||||
tmodel.load_state_dict(state_dict, strict=False)
|
||||
return tmodel
|
||||
|
||||
except FileNotFoundError:
|
||||
# 如果找不到权重文件,记录日志并修改 args
|
||||
self.logger.error(
|
||||
f"未找到教师模型权重文件: {model_path}。切换到预训练模式训练老师权重。\n"
|
||||
f"在预训练完成后,再次启动模型则为蒸馏模式")
|
||||
self.args['teacher_stu'] = False
|
||||
return None
|
||||
|
||||
|
||||
def loss_cls(self, x1, x2):
|
||||
temperature = 0.05
|
||||
x1 = F.normalize(x1, p=2, dim=-1)
|
||||
x2 = F.normalize(x2, p=2, dim=-1)
|
||||
weight = F.cosine_similarity(x1, x2, dim=-1)
|
||||
batch_size = x1.size()[0]
|
||||
# neg score
|
||||
out = torch.cat([x1, x2], dim=0)
|
||||
neg = torch.exp(torch.matmul(out, out.transpose(2, 3).contiguous()) / temperature)
|
||||
|
||||
pos = torch.exp(torch.sum(x1 * x2, dim=-1) * weight / temperature)
|
||||
# pos = torch.exp(torch.sum(x1 * x2, dim=-1) / temperature)
|
||||
pos = torch.cat([pos, pos], dim=0).sum(dim=1)
|
||||
|
||||
Ng = neg.sum(dim=-1).sum(dim=1)
|
||||
|
||||
loss = (- torch.log(pos / (pos + Ng))).mean()
|
||||
|
||||
return loss
|
||||
|
||||
@staticmethod
|
||||
def test(model, args, data_loader, scaler, logger, path=None):
|
||||
if path:
|
||||
checkpoint = torch.load(path)
|
||||
model.load_state_dict(checkpoint['state_dict'])
|
||||
model.to(args['device'])
|
||||
|
||||
model.eval()
|
||||
y_pred, y_true = [], []
|
||||
|
||||
with torch.no_grad():
|
||||
for data, target in data_loader:
|
||||
label = target[..., :args['output_dim']]
|
||||
output, _, _ = model(data)
|
||||
y_pred.append(output)
|
||||
y_true.append(label)
|
||||
|
||||
if args['real_value']:
|
||||
y_pred = scaler.inverse_transform(torch.cat(y_pred, dim=0))
|
||||
else:
|
||||
y_pred = torch.cat(y_pred, dim=0)
|
||||
y_true = torch.cat(y_true, dim=0)
|
||||
|
||||
# 你在这里需要把y_pred和y_true保存下来
|
||||
# torch.save(y_pred, "./test/PEMS07/y_pred_D.pt") # [3566,12,170,1]
|
||||
# torch.save(y_true, "./test/PEMSD8/y_true.pt") # [3566,12,170,1]
|
||||
|
||||
for t in range(y_true.shape[1]):
|
||||
mae, rmse, mape = all_metrics(y_pred[:, t, ...], y_true[:, t, ...],
|
||||
args['mae_thresh'], args['mape_thresh'])
|
||||
logger.info(f"Horizon {t + 1:02d}, MAE: {mae:.4f}, RMSE: {rmse:.4f}, MAPE: {mape:.4f}")
|
||||
|
||||
mae, rmse, mape = all_metrics(y_pred, y_true, args['mae_thresh'], args['mape_thresh'])
|
||||
logger.info(f"Average Horizon, MAE: {mae:.4f}, RMSE: {rmse:.4f}, MAPE: {mape:.4f}")
|
||||
|
||||
@staticmethod
|
||||
def _compute_sampling_threshold(global_step, k):
|
||||
return k / (k + math.exp(global_step / k))
|
||||
|
||||
|
||||
|
|
@ -107,6 +107,7 @@ class Trainer:
|
|||
best_loss = val_epoch_loss
|
||||
not_improved_count = 0
|
||||
best_model = copy.deepcopy(self.model.state_dict())
|
||||
torch.save(best_model, self.best_path)
|
||||
self.logger.info('Best validation model saved!')
|
||||
else:
|
||||
not_improved_count += 1
|
||||
|
|
@ -118,6 +119,7 @@ class Trainer:
|
|||
|
||||
if test_epoch_loss < best_test_loss:
|
||||
best_test_loss = test_epoch_loss
|
||||
torch.save(best_test_model, self.best_test_path)
|
||||
best_test_model = copy.deepcopy(self.model.state_dict())
|
||||
|
||||
if not self.args['debug']:
|
||||
|
|
@ -161,7 +163,7 @@ class Trainer:
|
|||
|
||||
# 你在这里需要把y_pred和y_true保存下来
|
||||
# torch.save(y_pred, "./test/PEMS07/y_pred_D.pt") # [3566,12,170,1]
|
||||
# torch.save(y_true, "./test/PEMS08/y_true.pt") # [3566,12,170,1]
|
||||
# torch.save(y_true, "./test/PEMSD8/y_true.pt") # [3566,12,170,1]
|
||||
|
||||
for t in range(y_true.shape[1]):
|
||||
mae, rmse, mape = all_metrics(y_pred[:, t, ...], y_true[:, t, ...],
|
||||
|
|
|
|||
|
|
@ -2,6 +2,7 @@ from trainer.Trainer import Trainer
|
|||
from trainer.cdeTrainer.cdetrainer import Trainer as cdeTrainer
|
||||
from trainer.DCRNN_Trainer import Trainer as DCRNN_Trainer
|
||||
from trainer.PDG2SEQ_Trainer import Trainer as PDG2SEQ_Trainer
|
||||
from trainer.STMLP_Trainer import Trainer as STMLP_Trainer
|
||||
|
||||
|
||||
def select_trainer(model, loss, optimizer, train_loader, val_loader, test_loader, scaler, args,
|
||||
|
|
@ -13,5 +14,7 @@ def select_trainer(model, loss, optimizer, train_loader, val_loader, test_loader
|
|||
lr_scheduler)
|
||||
case 'PDG2SEQ': return PDG2SEQ_Trainer(model, loss, optimizer, train_loader, val_loader, test_loader, scaler, args['train'],
|
||||
lr_scheduler)
|
||||
case 'STMLP': return STMLP_Trainer(model, loss, optimizer, train_loader, val_loader, test_loader, scaler, args,
|
||||
lr_scheduler)
|
||||
case _: return Trainer(model, loss, optimizer, train_loader, val_loader, test_loader, scaler, args['train'],
|
||||
lr_scheduler)
|
||||
|
|
|
|||
|
|
@ -299,7 +299,7 @@ def read_data(args):
|
|||
'pems03': ['PEMS03/pems03.npz', 'PEMS03/distance.csv'],
|
||||
'pems04': ['PEMS04/pems04.npz', 'PEMS04/distance.csv'],
|
||||
'pems07': ['PEMS07/pems07.npz', 'PEMS07/distance.csv'],
|
||||
'pems08': ['PEMS08/pems08.npz', 'PEMS08/distance.csv'],
|
||||
'pems08': ['PEMSD8/pems08.npz', 'PEMSD8/distance.csv'],
|
||||
'pemsbay': ['PEMSBAY/pems_bay.npz', 'PEMSBAY/distance.csv'],
|
||||
'pemsD7M': ['PeMSD7M/PeMSD7M.npz', 'PeMSD7M/distance.csv'],
|
||||
'pemsD7L': ['PeMSD7L/PeMSD7L.npz', 'PeMSD7L/distance.csv']
|
||||
|
|
|
|||
Loading…
Reference in New Issue