更新v2可读性

This commit is contained in:
czzhangheng 2025-11-28 21:32:49 +08:00
parent 0ad1494aec
commit f3b5bdfc28
2 changed files with 113 additions and 312 deletions

View File

@ -1,7 +1,7 @@
basic:
dataset: "SolarEnergy"
mode : "train"
device : "cuda:1"
device : "cuda:0"
model: "AEPSA_v2"
seed: 2023

View File

@ -6,311 +6,150 @@ from model.AEPSA.normalizer import GumbelSoftmax
from model.AEPSA.reprogramming import ReprogrammingLayer
import torch.nn.functional as F
# 该文件实现了基于动态图增强的时空序列预测模型
# 主要包含三个类DynamicGraphEnhancer动态图增强器、GraphEnhancedEncoder图增强编码器和AEPSA主模型
# 每个操作都标注了输入输出shape以帮助理解数据流向
# 基于动态图增强的时空序列预测模型实现
class DynamicGraphEnhancer(nn.Module):
"""
动态图增强器基于节点嵌入自动生成图结构
参考DDGCRN的设计使用节点嵌入和特征信息动态计算邻接矩阵
"""
"""动态图增强编码器"""
def __init__(self, num_nodes, in_dim, embed_dim=10):
# num_nodes: 节点数量
# in_dim: 输入特征维度
# embed_dim: 节点嵌入维度
super().__init__()
self.num_nodes = num_nodes
self.embed_dim = embed_dim
self.num_nodes = num_nodes # 节点个数
self.embed_dim = embed_dim # 节点嵌入维度
# 节点嵌入参数 [num_nodes, embed_dim]
self.node_embeddings = nn.Parameter(
torch.randn(num_nodes, embed_dim), requires_grad=True
self.node_embeddings = nn.Parameter(torch.randn(num_nodes, embed_dim), requires_grad=True) # 节点嵌入参数
self.feature_transform = nn.Sequential( # 特征转换网络
nn.Linear(in_dim, 16),
nn.Sigmoid(),
nn.Linear(16, 2),
nn.Sigmoid(),
nn.Linear(2, embed_dim)
)
# 特征转换层,用于生成动态调整的嵌入
# 输入: [N, in_dim] -> 输出: [N, embed_dim]
self.feature_transform = nn.Sequential(
nn.Linear(in_dim, 16), # [N, in_dim] -> [N, 16]
nn.Sigmoid(),
nn.Linear(16, 2), # [N, 16] -> [N, 2]
nn.Sigmoid(),
nn.Linear(2, embed_dim) # [N, 2] -> [N, embed_dim]
)
# 注册单位矩阵作为固定的支持矩阵 [num_nodes, num_nodes]
self.register_buffer("eye", torch.eye(num_nodes))
self.register_buffer("eye", torch.eye(num_nodes)) # 注册单位矩阵
def get_laplacian(self, graph, I, normalize=True):
"""
计算归一化拉普拉斯矩阵
参数:
graph: 邻接矩阵 [N, N]
I: 单位矩阵 [N, N]
normalize: 是否使用标准化拉普拉斯矩阵
返回:
laplacian: 归一化拉普拉斯矩阵 [N, N]
"""
# 计算度矩阵的逆平方根 [N, N]
D_inv = torch.diag_embed(torch.sum(graph, -1) ** (-0.5)) # [N, N]
D_inv = torch.diag_embed(torch.sum(graph, -1) ** (-0.5)) # 度矩阵的逆平方根
D_inv[torch.isinf(D_inv)] = 0.0 # 处理零除问题
if normalize:
# 归一化拉普拉斯矩阵: D^(-1/2) * graph * D^(-1/2) [N, N]
return torch.matmul(torch.matmul(D_inv, graph), D_inv) # [N, N]
return torch.matmul(torch.matmul(D_inv, graph), D_inv) # 归一化拉普拉斯矩阵
else:
# 拉普拉斯矩阵: D^(-1/2) * (graph + I) * D^(-1/2) [N, N]
return torch.matmul(torch.matmul(D_inv, graph + I), D_inv) # [N, N]
return torch.matmul(torch.matmul(D_inv, graph + I), D_inv) # 带自环的归一化拉普拉斯矩阵
def forward(self, X):
"""
参数:
X: 输入特征 [B, N, D]其中B为批次大小N为节点数D为特征维度
返回:
laplacians: 动态生成的归一化拉普拉斯矩阵 [B, N, N]
"""
batch_size = X.size(0)
laplacians = []
# 获取单位矩阵 [N, N]
I = self.eye.to(X.device)
"""生成动态拉普拉斯矩阵"""
batch_size = X.size(0) # 批次大小
laplacians = [] # 存储各批次的拉普拉斯矩阵
I = self.eye.to(X.device) # 移动单位矩阵到目标设备
for b in range(batch_size):
# 使用特征转换层生成动态嵌入调整因子 [N, embed_dim]
filt = self.feature_transform(X[b]) # [N, embed_dim]
# 计算节点嵌入向量 [N, embed_dim]
nodevec = torch.tanh(self.node_embeddings * filt) # [N, embed_dim]
# 通过节点嵌入的点积计算邻接矩阵 [N, N]
adj = F.relu(torch.matmul(nodevec, nodevec.transpose(0, 1))) # [N, N]
# 计算归一化拉普拉斯矩阵 [N, N]
laplacian = self.get_laplacian(adj, I) # [N, N]
filt = self.feature_transform(X[b]) # 特征转换
nodevec = torch.tanh(self.node_embeddings * filt) # 计算节点嵌入
adj = F.relu(torch.matmul(nodevec, nodevec.transpose(0, 1))) # 计算邻接矩阵
laplacian = self.get_laplacian(adj, I) # 计算拉普拉斯矩阵
laplacians.append(laplacian)
# 堆叠所有批次的拉普拉斯矩阵 [B, N, N]
return torch.stack(laplacians, dim=0) # [B, N, N]
return torch.stack(laplacians, dim=0) # 堆叠并返回
class GraphEnhancedEncoder(nn.Module):
"""
基于Chebyshev多项式和动态拉普拉斯矩阵的图增强编码器
用于将动态图结构信息整合到特征编码中
优化版本支持直接处理原始时间序列输入
"""
"""图增强编码器"""
def __init__(self, K=3, in_dim=64, hidden_dim=32, num_nodes=325, embed_dim=10, device='cpu',
temporal_dim=12, num_features=1):
# K: Chebyshev多项式阶数
# in_dim: 输入特征维度
# hidden_dim: 隐藏层维度
# num_nodes: 节点数量
# embed_dim: 嵌入维度
# temporal_dim: 时间序列长度
# num_features: 特征通道数量
super().__init__()
self.K = K # Chebyshev多项式阶数
self.in_dim = in_dim
self.hidden_dim = hidden_dim
self.device = device
self.temporal_dim = temporal_dim
self.num_features = num_features
self.in_dim = in_dim # 输入特征维度
self.hidden_dim = hidden_dim # 隐藏层维度
self.device = device # 运行设备
self.temporal_dim = temporal_dim # 时间序列长度
self.num_features = num_features # 特征通道数量
# 输入预处理层,适配正确的通道维度
# 输入: [B, C, N, T] -> 输出: [B, in_dim, N, 1]
self.input_projection = nn.Sequential(
# 2D卷积[B, C, N, T] -> [B, 16, N, T]
nn.Conv2d(num_features, 16, kernel_size=(1, 3), padding=(0, 1)), # [B, C, N, T] -> [B, 16, N, T]
self.input_projection = nn.Sequential( # 输入投影层
nn.Conv2d(num_features, 16, kernel_size=(1, 3), padding=(0, 1)),
nn.ReLU(),
# 2D卷积[B, 16, N, T] -> [B, in_dim, N, 1],时间维度上的全局卷积
nn.Conv2d(16, in_dim, kernel_size=(1, temporal_dim)), # [B, 16, N, T] -> [B, in_dim, N, 1]
nn.Conv2d(16, in_dim, kernel_size=(1, temporal_dim)),
nn.ReLU()
)
# 动态图增强器,用于生成动态拉普拉斯矩阵
# 输入: [B, N, in_dim] -> 输出: [B, N, N]
self.graph_enhancer = DynamicGraphEnhancer(num_nodes, in_dim, embed_dim)
# 谱系数 α_k (可学习参数) [K+1, 1]
self.alpha = nn.Parameter(torch.randn(K + 1, 1))
# 传播权重 W_k (可学习参数)
# 每个权重将Chebyshev多项式展开的结果从in_dim映射到hidden_dim
# 输入: [N, in_dim] -> 输出: [N, hidden_dim]
self.W = nn.ParameterList([
nn.Parameter(torch.randn(in_dim, hidden_dim)) for _ in range(K + 1)
])
self.to(device)
self.graph_enhancer = DynamicGraphEnhancer(num_nodes, in_dim, embed_dim) # 动态图增强器
self.alpha = nn.Parameter(torch.randn(K + 1, 1)) # 谱系数
self.W = nn.ParameterList([nn.Parameter(torch.randn(in_dim, hidden_dim)) for _ in range(K + 1)]) # 传播权重
self.to(device) # 移动到指定设备
def chebyshev_polynomials(self, L_tilde, X):
"""
递归计算Chebyshev多项式展开 [T_0(L_tilde)X, ..., T_K(L_tilde)X]
参数:
L_tilde: 归一化拉普拉斯矩阵 [N, N]
X: 输入特征 [N, in_dim]
返回:
T_k_list: Chebyshev多项式展开列表 [K+1, N, in_dim]
"""
# T_0(X) = X [N, in_dim]
T_k_list = [X]
"""计算Chebyshev多项式展开"""
T_k_list = [X] # T_0(X) = X
if self.K >= 1:
# T_1(X) = L_tilde * X [N, in_dim]
T_k_list.append(torch.matmul(L_tilde, X))
T_k_list.append(torch.matmul(L_tilde, X)) # T_1(X) = L_tilde * X
for k in range(2, self.K + 1):
# T_k(X) = 2*L_tilde*T_{k-1}(X) - T_{k-2}(X) [N, in_dim]
T_k_list.append(2 * torch.matmul(L_tilde, T_k_list[-1]) - T_k_list[-2])
# 返回Chebyshev多项式展开列表 [K+1, N, in_dim]
return T_k_list
T_k_list.append(2 * torch.matmul(L_tilde, T_k_list[-1]) - T_k_list[-2]) # 递推计算
return T_k_list # 返回多项式列表
def forward(self, X):
"""
参数:
X: 输入特征 [B, N, C, T] [B, N, T]单特征情况
B: 批次大小, N: 节点数, C: 特征通道数, T: 时间序列长度
"""输入特征[B,N,C,T],返回增强特征[B,N,hidden_dim*(K+1)]"""
batch_size = X.size(0) # 批次大小
num_nodes = X.size(1) # 节点数量
返回:
增强后的特征 [B, N, hidden_dim*(K+1)]
"""
batch_size = X.size(0)
num_nodes = X.size(1)
x = X.permute(0, 2, 1, 3) # [B,C,N,T]
x_proj = self.input_projection(x).squeeze(-1) # [B,in_dim,N]
x_proj = x_proj.permute(0, 2, 1) # [B,N,in_dim]
# 处理不同维度的输入
if len(X.shape) == 4: # [B, N, C, T]
# 输入: [B, N, C, T] -> 输出: [B, C, N, T]
# 将输入转换为[B, C, N, T]格式适合2D卷积
x = X.permute(0, 2, 1, 3) # [B, C, N, T]
else: # [B, N, T]
# 输入: [B, N, T] -> 输出: [B, 1, N, T]
# 添加通道维度
x = X.unsqueeze(1) # [B, 1, N, T]
# 使用卷积投影层处理时间维度
# 输入: [B, C, N, T] -> 输出: [B, in_dim, N, 1]
x_proj = self.input_projection(x)
# 输入: [B, in_dim, N, 1] -> 输出: [B, in_dim, N]
x_proj = x_proj.squeeze(-1) # [B, in_dim, N]
# 输入: [B, in_dim, N] -> 输出: [B, N, in_dim]
x_proj = x_proj.permute(0, 2, 1) # [B, N, in_dim]
enhanced_features = []
# 动态生成拉普拉斯矩阵
# 输入: [B, N, in_dim] -> 输出: [B, N, N]
laplacians = self.graph_enhancer(x_proj) # [B, N, N]
enhanced_features = [] # 存储增强特征
laplacians = self.graph_enhancer(x_proj) # 生成动态拉普拉斯矩阵
for b in range(batch_size):
# 获取当前批次的拉普拉斯矩阵 [N, N]
L = laplacians[b] # [N, N]
L = laplacians[b] # 当前批次的拉普拉斯矩阵
# 特征值缩放
try:
# 计算最大特征值 [1]
lambda_max = torch.linalg.eigvalsh(L).max().real # [1]
# 避免除零问题
if lambda_max < 1e-6:
lambda_max = 1.0
# 缩放拉普拉斯矩阵到[-1, 1]区间 [N, N]
L_tilde = (2.0 / lambda_max) * L - torch.eye(L.size(0), device=L.device) # [N, N]
lambda_max = torch.linalg.eigvalsh(L).max().real # 最大特征值
lambda_max = 1.0 if lambda_max < 1e-6 else lambda_max # 防止除零
L_tilde = (2.0 / lambda_max) * L - torch.eye(L.size(0), device=L.device) # 归一化拉普拉斯
except:
# 如果计算特征值失败,使用单位矩阵 [N, N]
L_tilde = torch.eye(num_nodes, device=X.device) # [N, N]
L_tilde = torch.eye(num_nodes, device=X.device) # 异常处理
# 计算Chebyshev多项式展开
# 输入: L_tilde [N, N], x_proj [N, in_dim] -> 输出: [K+1, N, in_dim]
T_k_list = self.chebyshev_polynomials(L_tilde, x_proj[b]) # [K+1, N, in_dim]
H_list = []
# 应用传播权重
for k in range(self.K + 1):
# 矩阵乘法: [N, in_dim] × [in_dim, hidden_dim] -> [N, hidden_dim]
H_k = torch.matmul(T_k_list[k], self.W[k]) # [N, hidden_dim]
H_list.append(H_k)
# 拼接所有尺度的特征
# 输入: [K+1, N, hidden_dim] -> 输出: [N, hidden_dim*(K+1)]
X_enhanced = torch.cat(H_list, dim=-1) # [N, hidden_dim*(K+1)]
# 计算展开并应用权重
T_k_list = self.chebyshev_polynomials(L_tilde, x_proj[b]) # 计算Chebyshev多项式
H_list = [torch.matmul(T_k_list[k], self.W[k]) for k in range(self.K + 1)] # 应用权重
X_enhanced = torch.cat(H_list, dim=-1) # 拼接特征
enhanced_features.append(X_enhanced)
# 堆叠所有批次的增强特征
# 输入: [B, N, hidden_dim*(K+1)] -> 输出: [B, N, hidden_dim*(K+1)]
return torch.stack(enhanced_features, dim=0) # [B, N, hidden_dim*(K+1)]
return torch.stack(enhanced_features, dim=0) # 堆叠返回[B,N,hidden_dim*(K+1)]每个节点在每个k阶下的切比雪夫特征
class AEPSA(nn.Module):
"""
自适应特征投影时空自注意力模型AEPSA
整合动态图增强和预训练语言模型进行时空序列预测
"""
"""自适应特征投影时空自注意力模型"""
def __init__(self, configs):
# configs: 包含模型所有配置的字典
# 主要配置参数说明:
# device: 运行设备
# pred_len: 预测序列长度
# seq_len: 输入序列长度
# patch_len: 补丁长度(已移除对应组件)
# input_dim: 输入特征维度
# stride: 步长(已移除对应组件)
# dropout: Dropout概率
# gpt_layers: 使用的GPT2层数
# d_ff: 前馈网络隐藏层维度
# gpt_path: 预训练GPT2模型路径
# num_nodes: 节点数量
# word_num: GumbelSoftmax词汇数量
# d_model: 模型维度
# n_heads: 注意力头数量
# chebyshev_order: Chebyshev多项式阶数
# graph_hidden_dim: 图编码器隐藏层维度
# graph_embed_dim: 图编码器嵌入维度
super(AEPSA, self).__init__()
self.device = configs['device']
self.pred_len = configs['pred_len']
self.seq_len = configs['seq_len']
self.patch_len = configs['patch_len']
self.input_dim = configs['input_dim']
self.stride = configs['stride']
self.dropout = configs['dropout']
self.gpt_layers = configs['gpt_layers']
self.d_ff = configs['d_ff']
self.gpt_path = configs['gpt_path']
self.num_nodes = configs.get('num_nodes', 325) # 添加节点数量配置
self.device = configs['device'] # 运行设备
self.pred_len = configs['pred_len'] # 预测序列长度
self.seq_len = configs['seq_len'] # 输入序列长度
self.patch_len = configs['patch_len'] # 补丁长度
self.input_dim = configs['input_dim'] # 输入特征维度
self.stride = configs['stride'] # 步长
self.dropout = configs['dropout'] # Dropout概率
self.gpt_layers = configs['gpt_layers'] # 使用的GPT2层数
self.d_ff = configs['d_ff'] # 前馈网络隐藏层维度
self.gpt_path = configs['gpt_path'] # 预训练GPT2模型路径
self.num_nodes = configs.get('num_nodes', 325) # 节点数量
# GumbelSoftmax层用于词汇选择
# 输入: [vocab_size] -> 输出: [vocab_size]one-hot近似分布
self.word_choice = GumbelSoftmax(configs['word_num'])
self.word_choice = GumbelSoftmax(configs['word_num']) # 词汇选择层
self.d_model = configs['d_model']
self.n_heads = configs['n_heads']
self.d_keys = None
self.d_model = configs['d_model'] # 模型维度
self.n_heads = configs['n_heads'] # 注意力头数量
self.d_keys = None # 键维度
self.d_llm = 768 # GPT2隐藏层维度
self.patch_nums = int((self.seq_len - self.patch_len) / self.stride + 2)
self.head_nf = self.d_ff * self.patch_nums
self.patch_nums = int((self.seq_len - self.patch_len) / self.stride + 2) # 补丁数量
self.head_nf = self.d_ff * self.patch_nums # 头特征维度
# 移除不再使用的patch_embedding层
# GPT2初始化
# 加载预训练GPT2模型输出注意力权重和隐藏状态
self.gpts = GPT2Model.from_pretrained(self.gpt_path, output_attentions=True, output_hidden_states=True)
# 初始化GPT2模型
self.gpts = GPT2Model.from_pretrained(self.gpt_path, output_attentions=True, output_hidden_states=True) # GPT2模型
self.gpts.h = self.gpts.h[:self.gpt_layers] # 截取指定层数
self.gpts.apply(self.reset_parameters)
self.gpts.apply(self.reset_parameters) # 重置参数
# 获取GPT2词嵌入权重
# 形状: [vocab_size, d_llm]
self.word_embeddings = self.gpts.get_input_embeddings().weight.to(self.device)
self.vocab_size = self.word_embeddings.shape[0]
# 映射层将词汇表维度映射到1维
# 输入: [vocab_size] -> 输出: [1]
self.mapping_layer = nn.Linear(self.vocab_size, 1)
# 重编程层,用于特征映射和注意力计算
# 输入: [B, N, d_model], [d_llm], [d_llm] -> 输出: [B, N, d_model]
self.reprogramming_layer = ReprogrammingLayer(self.d_model, self.n_heads, self.d_keys, self.d_llm)
self.word_embeddings = self.gpts.get_input_embeddings().weight.to(self.device) # 词嵌入权重
self.vocab_size = self.word_embeddings.shape[0] # 词汇表大小
self.mapping_layer = nn.Linear(self.vocab_size, 1) # 映射层
self.reprogramming_layer = ReprogrammingLayer(self.d_model, self.n_heads, self.d_keys, self.d_llm) # 重编程层
# 动态图增强编码器
# 输入: [B, N, C, T] -> 输出: [B, N, hidden_dim*(K+1)]
# 初始化图增强编码器
self.graph_encoder = GraphEnhancedEncoder(
K=configs.get('chebyshev_order', 3), # Chebyshev多项式阶数
in_dim=self.d_model, # 输入特征维度
@ -322,11 +161,9 @@ class AEPSA(nn.Module):
num_features=self.input_dim # 特征通道数
)
# 图特征投影层将图增强特征维度转换为d_model
# 输入: [B, N, hidden_dim*(K+1)] -> 输出: [B, N, d_model]
self.graph_projection = nn.Linear(
configs.get('graph_hidden_dim', 32) * (configs.get('chebyshev_order', 3) + 1),
self.d_model
self.graph_projection = nn.Linear( # 图特征投影层每一k阶的切比雪夫权重映射到隐藏维度
configs.get('graph_hidden_dim', 32) * (configs.get('chebyshev_order', 3) + 1), # 输入维度
self.d_model # 输出维度
)
self.out_mlp = nn.Sequential(
@ -335,11 +172,9 @@ class AEPSA(nn.Module):
nn.Linear(128, self.pred_len)
)
for i, (name, param) in enumerate(self.gpts.named_parameters()):
if 'wpe' in name:
param.requires_grad = True
else:
param.requires_grad = False
# 设置参数可训练性 wps=word position embeddings
for name, param in self.gpts.named_parameters():
param.requires_grad = 'wpe' in name
def reset_parameters(self, module):
if hasattr(module, 'weight') and module.weight is not None:
@ -348,60 +183,26 @@ class AEPSA(nn.Module):
torch.nn.init.zeros_(module.bias)
def forward(self, x):
"""
前向传播函数
输入:
x: 输入数据 [B, T, N, C]其中B为批次大小T为时间步长N为节点数C为特征通道数
# 数据处理
x = x[..., :1] # [B,T,N,1]
x_enc = rearrange(x, 'b t n c -> b n c t') # [B,N,1,T]
返回:
outputs: 预测结果 [B, pred_len, N, 1]
"""
# 只保留第一个特征通道
# 输入: [B, T, N, C] -> 输出: [B, T, N, 1]
x = x[..., :1] # [B, T, N, 1]
# 图编码
graph_enhanced = self.graph_encoder(x_enc) # [B,N,1,T] -> [B, N, hidden_dim*(K+1)]
enc_out = self.graph_projection(graph_enhanced) # [B,N,d_model]
# 调整输入维度以适配图编码器
# 输入: [B, T, N, 1] -> 输出: [B, N, 1, T]
x_enc = rearrange(x, 'b t n c -> b n c t') # [B, N, 1, T]
# 词嵌入处理
self.mapping_layer(self.word_embeddings.permute(1, 0)).permute(1, 0)
masks = self.word_choice(self.mapping_layer.weight.data.permute(1,0)) # [d_llm,1]
source_embeddings = self.word_embeddings[masks==1] # [selected_words,d_llm]
# 应用图增强编码器获取增强特征
# 输入: [B, N, 1, T] -> 输出: [B, N, hidden_dim*(K+1)]
graph_enhanced = self.graph_encoder(x_enc) # [B, N, hidden_dim*(K+1)]
# 重编程与预测
enc_out = self.reprogramming_layer(enc_out, source_embeddings, source_embeddings)
enc_out = self.gpts(inputs_embeds=enc_out).last_hidden_state # [B,N,d_llm]
dec_out = self.out_mlp(enc_out) # [B,N,pred_len]
# 投影图增强特征到模型维度
# 输入: [B, N, hidden_dim*(K+1)] -> 输出: [B, N, d_model]
enc_out = self.graph_projection(graph_enhanced) # [B, N, d_model]
# 维度调整
outputs = dec_out.unsqueeze(dim=-1) # [B,N,pred_len,1]
outputs = outputs.permute(0, 2, 1, 3) # [B,pred_len,N,1]
# 处理词嵌入权重,为注意力机制准备
# 输入: [vocab_size, d_llm] -> 输出: [d_llm, vocab_size] -> [d_llm, vocab_size]
self.mapping_layer(self.word_embeddings.permute(1, 0)).permute(1, 0) # [vocab_size, d_llm]
# 使用GumbelSoftmax选择词汇
# 输入: [d_llm, 1] -> 输出: [d_llm, 1]
masks = self.word_choice(self.mapping_layer.weight.data.permute(1,0)) # [d_llm, 1]
# 获取选中的源嵌入
# 输入: [vocab_size, d_llm] 与 masks -> 输出: [selected_words, d_llm]
source_embeddings = self.word_embeddings[masks==1] # [selected_words, d_llm]
# 应用重编程层处理特征和源嵌入
# 输入: [B, N, d_model], [selected_words, d_llm], [selected_words, d_llm] -> 输出: [B, N, d_model]
enc_out = self.reprogramming_layer(enc_out, source_embeddings, source_embeddings) # [B, N, d_model]
# 通过GPT2模型处理增强特征
# 输入: [B, N, d_model] -> 输出: [B, N, d_llm]
enc_out = self.gpts(inputs_embeds=enc_out).last_hidden_state # [B, N, d_llm]
# 使用MLP预测未来时间步
# 输入: [B, N, d_llm] -> 输出: [B, N, pred_len]
dec_out = self.out_mlp(enc_out) # [B, N, pred_len]
# 添加通道维度
# 输入: [B, N, pred_len] -> 输出: [B, N, pred_len, 1]
outputs = dec_out.unsqueeze(dim=-1) # [B, N, pred_len, 1]
# 调整维度顺序为 [B, pred_len, N, 1]
# 输入: [B, N, pred_len, 1] -> 输出: [B, pred_len, N, 1]
outputs = outputs.permute(0, 2, 1, 3) # [B, pred_len, N, 1]
return outputs # [B, pred_len, N, 1]
return outputs